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Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est laborum.

1 Introduction

On a world with web services billed by the mil-
lisecond, such as AWS Lambda[1], time is money.
Accessing a remote database from such environ-
ment means that the time spent waiting the con-
nection to establish is money lost. On the web,
such delay in the response from the server side
increases power consumption on mobile devices[2]
and decreases user experience[5]. Therefore, re-
ducing such latency is crucial and would bring
clear benefits.

Gvozdiev et al. proposes Low Delay Routing[4]
(LDR) as a solution for this problem, which is
a network routing algorithm that got impressive
results on the metrics that reflect its purpose. De-
spite its attractive results on latency, there’s no in-
depth evaluation of bandwidth and jitter. Storage
and processing components usually requires that
the owner chooses up to two attributes from high
speed, high capacity and low cost, and, extending
such dilemma to the network area, LDR had to
give up somewhere. But where? Are there other
limits which were not mentioned?

2 Materials and Methods

To answer that question, we set up a testing envi-
ronment with Mininet, Ryu and some own code on
a PC equipped with an i7 4790 (4 cores, 8 threads,
4GHz) and 16GB RAM DDR3@1600MHz, run-

ning Arch Linux. “Mininet is a system for rapidly
prototyping large networks on the constrained re-
sources of a single laptop”[6, p. 1], which was used
to create the emulated network and run commands
on the hosts it created. “Ryu is a component-
based software defined networking framework”[3],
which was used to define the behavior that the
switches would have using OpenFlow. Our own
code is a collection of Python scripts and a Make-
file, including our re-implementation of Gvozdiev
et al.’s as a Ryu controller, which were respon-
sible for routing, monitoring, visualization, auto-
matic testing and both table and chart genera-
tion. These tools generated the data that will be
discussed on section 3, but, first, we will explain
more on how our tool set does what it does on the
next subsections.

2.1 Dividing the network for tests

Suppose we have an array of hosts, such as:

h1 h2 h3 h4 h5 h6 h7 h8 h9

An easy way to get pairs to test is split such array
in path, discarding the extra member:

hx h1 h2 h3 h4 h5
hx h6 h7 h8 h9 hx

As h1 and h6 were, on some topologies, closer to
each other than to h9 (the last element), and the
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first pair would be a latency test, it was chosen
to reverse the second part. The final combination
would be:

h1 h2 h3 h4
h9 h8 h7 h6

That said, h1 and h9 are latency tests and all
other 3 pairs are bandwidth tests. All tests are
run sequentially and then concurrently, in order to
measure all links in its idle and overloaded state.
Between every test there’s a wait time that is ex-
actly 2 times the monitoring interval, which is the
minimal interval to make the routing algorithm see
the entire network as unused. Latency is avg from
ping command; jitter, mdev from the same com-
mand; bandwidth, the bottom line of the iperf
command running as client, using TCP.

2.2 Representing the topologies

The topologies are stored as JSON files. Such file
contains an array that contains 3 arrays. The first
array is a list of strings that represents the list of
hosts. The second array is a list of strings that
represents the list of switches. The last array is
a list of arrays that represents the list of links.
Every array that represents a link contain an two
strings that represents either a host or a switch,
and the third element is a number that represents
the maximum bandwidth of such link. Then, it
comes the time to present the topologies.

2.3 The topologies

We tested 9 topologies. Switches (starts with “s”,
such as “s3”) were represented by blue circles.
Hosts (starts with “h”, such as “h7”) were rep-
resented by green circles. When there is no indi-
cation of speed on the edge, the speed is 1 mbps.
The topologies are:

Triangle: This topology is a triangle that has a
longer and slower path that only becomes a
viable path when the shorter and faster is
congested.
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Figure 1: “Triangle” topology

Binary tree: asd
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Figure 2: “Binary tree” topology

Fat tree: asd
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Figure 3: “Fat tree” topology

3-layered CLOS: asd
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Figure 4: “3-layered CLOS” topology

Bipartite: A CLOS with an extra
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Figure 5: “Bipartite” topology

5-layered CLOS: asd
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Figure 6: “5-layered CLOS” topology

Grid: asd
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Figure 7: “Grid” topology

DCell: This topology, as presented in Pries et
al.’s work [7],
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Figure 8: “DCell” topology
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Figure 9: “DCell” topology with extra switches

BCube: This topology, as presented in Pries et
al.’s work [7],
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Figure 10: “BCube” topology
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Figure 11: “BCube” topology with extra switches

2.4 The OpenFlow controller

Our Ryu controller got the shortcut of knowing
the topology
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