
Comparative performance evaluation of Low Delay Routing on
emulated environment

Ádler Oliveira Silva Neves
adler.neves@aluno.ufes.br

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est laborum.

1 Introduction

On a world with web services billed by the mil-
lisecond, such as AWS Lambda[1], time is money.
Accessing a remote database from such environ-
ment means that the time spent waiting the con-
nection to establish is money lost. On the web,
such delay in the response from the server side
increases power consumption on mobile devices[2]
and decreases user experience[5]. Therefore, re-
ducing such latency is crucial and would bring
clear benefits.

Gvozdiev et al. proposes Low Delay Routing[4]
(LDR) as a solution for this problem, which is
a network routing algorithm that got impressive
results on the metrics that reflect its purpose. De-
spite its attractive results on latency, there’s no in-
depth evaluation of bandwidth and jitter. Storage
and processing components usually requires that
the owner chooses up to two attributes from high
speed, high capacity and low cost, and, extending
such dilemma to the network area, LDR had to
give up somewhere. But where? Are there other
limits which were not mentioned?

2 Materials and Methods

To answer that question, we set up a testing envi-
ronment with Mininet, Ryu and some own code on
a PC equipped with an i7 4790 (4 cores, 8 threads,
4GHz) and 16GB RAM DDR3@1600MHz, run-

ning Arch Linux. “Mininet is a system for rapidly
prototyping large networks on the constrained re-
sources of a single laptop”[6, p. 1], which was used
to create the emulated network and run commands
on the hosts it created. “Ryu is a component-
based software defined networking framework”[3],
which was used to define the behavior that the
switches would have using OpenFlow. Our own
code is a collection of Python scripts and a Make-
file, including our re-implementation of Gvozdiev
et al.’s as a Ryu controller, which were respon-
sible for routing, monitoring, visualization, auto-
matic testing and both table and chart genera-
tion. These tools generated the data that will be
discussed on section 3, but, first, we will explain
more on how our tool set does what it does on the
next subsections.

2.1 Dividing the network for tests

Suppose we have an array of hosts, such as:

h1 h2 h3 h4 h5 h6 h7 h8 h9

An easy way to get pairs to test is split such array
in path, discarding the extra member:

hx h1 h2 h3 h4 h5
hx h6 h7 h8 h9 hx

As h1 and h6 were, on some topologies, closer to
each other than to h9 (the last element), and the

1

mailto:adler.neves@aluno.ufes.br


2

first pair would be a latency test, it was chosen
to reverse the second part. The final combination
would be:

h1 h2 h3 h4
h9 h8 h7 h6

That said, h1 and h9 are latency tests and all
other 3 pairs are bandwidth tests. All tests are
run sequentially and then concurrently, in order to
measure all links in its idle and overloaded state.
Between every test there’s a wait time that is ex-
actly 2 times the monitoring interval, which is the
minimal interval to make the routing algorithm see
the entire network as unused. Latency is avg from
ping command; jitter, mdev from the same com-
mand; bandwidth, the bottom line of the iperf
command running as client, using TCP.

2.2 Representing the topologies

The topologies are stored as JSON files. Such file
contains an array that contains 3 arrays. The first
array is a list of strings that represents the list of
hosts. The second array is a list of strings that
represents the list of switches. The last array is
a list of arrays that represents the list of links.
Every array that represents a link contain an two
strings that represents either a host or a switch,
and the third element is a number that represents
the maximum bandwidth of such link. Then, it
comes the time to present the topologies.

2.3 The topologies

We tested 9 topologies. Switches (starts with “s”,
such as “s3”) were represented by blue circles.
Hosts (starts with “h”, such as “h7”) were rep-
resented by green circles. When there is no indi-
cation of speed on the edge, the speed is 1 mbps.
The topologies are:

Triangle: This topology is a triangle that has a
longer and slower path that only becomes a
viable path when the shorter and faster is
congested.

100.0 mbps

100.0 mbps

100.0 mbps

100.0 mbps

0.8 mbps

1.0 mbps

0.8 mbps

h1

h2

h3

h4

s1
s2

s3

Figure 1: “Triangle” topology

Binary tree: asd

h1

h2

h3 h4

h5 h6

h7

h8

h9 h10

h11

h12

h13

h14

h15 h16

s1
s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13 s14

s15

Figure 2: “Binary tree” topology

Fat tree: asd

h1

h2

h3

h4

h5
h6h7 h8

h9

h10

h11

h12

h13 h14h15
h16

s4
s5

s6

s7
s8s9

s10s11

s12
s13

s14

s15
s16s17

s18s19

s1s2s3

Figure 3: “Fat tree” topology

3-layered CLOS: asd

h1

h2

h3

h4

h5

h6

h7

h8

h9
h10

h11 h12

h13h14
h15

h16

s1

s2

s3

s4

s5
s6

s7
s8

s9s10s11

Figure 4: “3-layered CLOS” topology

Bipartite: A CLOS with an extra



3

h1

h2

h3

h4

h5

h6

h7 h8

h9

h10

h11

h12
h13 h14

h15

h16

s1
s2

s3
s4

s5

s6
s7

s8

s9s10
s11

s12

Figure 5: “Bipartite” topology

5-layered CLOS: asd

h1
h2

h3
h4

h5

h6

h7

h8

h9
h10

h11
h12

h13

h14

h15

h16

s1

s2

s3

s4

s5
s6s7

s8
s9
s10

s11

s12

s13

s14

Figure 6: “5-layered CLOS” topology

Grid: asd

h1
h2 h3

h4

h5
h6 h7

h8

h9
h10 h11

h12

h13
h14 h15

h16

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

Figure 7: “Grid” topology

DCell: This topology, as presented in Pries et
al.’s work [7],

h1

h2
h3

h4

h5

h6 h7

h8

h9
h10

h11

h12

h13h14

h15

h16

h17
h18

h19 h20 s1
s2

s3
s4

s5

Figure 8: “DCell” topology

h1

h2

h3

h4

h5

h6
h7

h8

h9h10

h11

h12

h13
h14

h15

h16

h17h18

h19
h20

s1
s2

s3
s4

s5

s6
s7

s8 s9

s10

s11 s12s13

s14

s15

s16 s17s18

s19

s20

s21

s22s23

s24 s25

Figure 9: “DCell” topology with extra switches

BCube: This topology, as presented in Pries et
al.’s work [7],

h1

h2

h3

h4

h5

h6

h7

h8

h9 h10

h11

h12
h13

h14

h15

h16

s5

s6

s7

s8

s1
s2 s3
s4

Figure 10: “BCube” topology

h1

h2

h3 h4

h5 h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16

s5

s6

s7
s8 s9

s10s11
s12

s13
s14

s15
s16

s17

s18

s19

s20 s21

s22
s23

s24
s1s2s3s4

Figure 11: “BCube” topology with extra switches

2.4 The OpenFlow controller

Our Ryu controller got the shortcut of knowing
the topology



4

3 Results

4 Discussion

5 Acknowledgments

References
[1] Amazon. AWS Lambda pricing. [Online; ac-

cessed 05-Jul-2019]. 2019. url: https : / /
aws.amazon.com/lambda/pricing/.

[2] Duc Hoang Bui et al. “Rethinking Energy-
Performance Trade-Off in Mobile Web Page
Loading”. In: Proceedings of the 21st Annual
International Conference on Mobile Comput-
ing and Networking. MobiCom ’15. Paris,
France: ACM, 2015, pp. 14–26. isbn: 978-
1-4503-3619-2. doi: 10 . 1145 / 2789168 .
2790103. url: http://doi.acm.org/10.
1145/2789168.2790103.

[3] Ryu SDN Framework Community. Ryu SDN
Framwork. [Online; accessed 05-Jul-2019].
2017. url: http://osrg.github.io/ryu/.

[4] Nikola Gvozdiev et al. “On Low-latency-
capable Topologies, and Their Impact on the
Design of Intra-domain Routing”. In: Pro-
ceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communi-

cation. SIGCOMM ’18. Budapest, Hungary:
ACM, 2018, pp. 88–102. isbn: 978-1-4503-
5567-4. doi: 10 . 1145 / 3230543 . 3230575.
url: http : / / doi . acm . org / 10 . 1145 /
3230543.3230575.

[5] Conor Kelton et al. “Improving User Per-
ceived Page Load Times Using Gaze”. In:
14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI
17). Boston, MA: USENIX Association,
2017, pp. 545–559. isbn: 978-1-931971-37-
9. url: https : / / www . usenix . org /
conference/nsdi17/technical-sessions/
presentation/kelton.

[6] Bob Lantz, Brandon Heller, and Nick McK-
eown. “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks”.
In: Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Net-
works. Hotnets-IX. Monterey, California:
ACM, 2010, 19:1–19:6. isbn: 978-1-4503-
0409-2. doi: 10 . 1145 / 1868447 . 1868466.
url: http : / / doi . acm . org / 10 . 1145 /
1868447.1868466.

[7] Rastin Pries et al. “Power Consumption
Analysis of Data Center Architectures”. In:
Green Communications and Networking. Ed.
by Joel J. P. C. Rodrigues et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 114–124. isbn: 978-3-642-33368-2.

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://doi.org/10.1145/2789168.2790103
https://doi.org/10.1145/2789168.2790103
http://doi.acm.org/10.1145/2789168.2790103
http://doi.acm.org/10.1145/2789168.2790103
http://osrg.github.io/ryu/
https://doi.org/10.1145/3230543.3230575
http://doi.acm.org/10.1145/3230543.3230575
http://doi.acm.org/10.1145/3230543.3230575
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466

	Introduction
	Materials and Methods
	Dividing the network for tests
	Representing the topologies
	The topologies
	The OpenFlow controller

	Results
	Discussion
	Acknowledgments

