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ABSTRACT
An ISP’s customers increasingly demand delivery of their

traffic without congestion and with low latency. The ISP’s

topology, routing, and traffic engineering, often over multiple

paths, together determine congestion and latency within its

backbone. We first consider how to measure a topology’s ca-

pacity to route traffic without congestion and with low latency.

We introduce low-latency path diversity (LLPD), a metric that

captures a topology’s flexibility to accommodate traffic on

alternative low-latency paths. We explore to what extent 116

real backbone topologies can, regardless of routing system,

keep latency low when demand exceeds the shortest path’s

capacity. We find, perhaps surprisingly, that topologies with

good LLPD are precisely those where routing schemes strug-

gle to achieve low latency without congestion. We examine

why these schemes perform poorly, and offer an existence

proof that a practical routing scheme can achieve a topology’s

potential for congestion-free, low-delay routing. Finally we

examine implications for the design of backbone topologies

amenable to achieving high capacity and low delay.
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1 INTRODUCTION
In recent years, low-latency communication has taken on

a new importance. Latency matters, not just for obviously

latency-sensitive applications such as telephony or games [15],

but also for applications such as web browsing. Much effort

has been put into reducing buffer bloat [35], improving TCP

loss recovery [10], and deploying congestion control that tries

not to build queues [6]. Content providers often reduce la-

tency by moving content closer to users. ISPs can also reduce

latency by choosing low-propagation delay paths, though as

queueing inflates latency, traffic must be placed on low-delay

paths so as to avoid causing congestion.

An ISP has two design choices available that determine

the congestion and delay experienced by traffic within its

backbone: the topology itself and the placement of traffic on

that topology, as determined by a combination of routing and

traffic engineering.1 There has been little systematic study of

the interaction between a topology’s design and the behavior

of routing schemes when run on it. A topology’s designer

must, even if only implicitly, take into account how the rout-

ing system will behave on that topology. Similarly, a new

routing system’s designer would have in mind (again, perhaps

implicitly) topologies on which routing should perform well.

Each of these approaches starts by fixing a “legacy” design

(either the routing or the topology) and attempts to tailor the

other to it. If either legacy design isn’t a good fit with placing

traffic to avoid congestion and achieve low latency, the ability

of the ensemble to meet those aims will suffer.

In this paper we break with this approach and develop a

routing-agnostic, first-principles understanding of the sorts

of ISP topologies that fundamentally have the potential to

deliver time-varying traffic demands with low latency and

without congestion: namely, those with diverse low-latency
paths. We quantify the extent to which 116 real ISP backbone

topologies from the Internet Topology Zoo [29] exhibit this

potential. From there, we explore in detail how well today’s

widely known routing systems manage to exploit these same

ISP topologies’ inherent potential for congestion-free, low-

latency traffic placement. We find, somewhat surprisingly, that

on topologies with diverse low-latency paths—precisely those

with the greatest potential of this sort—status-quo schemes

from shortest-path routing to B4 [25] and MinMax traffic

engineering (e.g., TeXCP [27]) arrive at traffic placements

that suffer congestion or high latency stretch. We reveal why

1In the interest of brevity, we will often refer to this combination as routing.
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these routing designs encounter these poor outcomes on these

promising topologies.

Further, a routing scheme that aims for congestion-free,

low-latency traffic placements must not congest links when

traffic demands vary over time. A simple way to guard against

overloading links when demands increase is to enforce head-
room: to reserve some minimum fraction of each link’s ca-

pacity to accommodate foreseen but rare demand increases.

Putting capacity aside to soak up demand spikes, however,

can be seen as changing the topology; a capacity-aware rout-

ing scheme may move some traffic to longer paths when the

capacity of a short-delay path is “reduced.” We explore this

interplay, and show that one may view the design space of

congestion-free, low-delay routing schemes as falling along a

continuum. At one extreme is a notional scheme that employs

no headroom on any links—and thus achieves the lowest

delay a given topology can offer, at the expense of risking

congestion when demand increases. At the other are MinMax

schemes, which by definition leave as much headroom on

links as possible. These are resilient to congestion caused by

demand changes, at the expense of using longer paths. In an

ISP setting, where demand isn’t known perfectly in advance,

it is an open question where on this continuum a practical

routing scheme should lie. Is there a sweet spot with enough

headroom to cope with demand variability, yet not so much

that paths are needlessly circuitous, incurring high latency?

We sketch an approach to routing on path-diverse topolo-

gies that achieves their potential more fully, while coping

with demand variability. We do not claim that this approach is

ready for deployment, or has every engineering detail worked

out. Rather, our contributions lie in:

• revealing the nuanced interaction between a topology’s

path diversity and routing schemes that aim to deliver low

latency without congestion;

• revealing exactly why existing routing schemes cannot

unlock the low-latency potential of path-diverse topologies;

• identifying the central role of headroom in effecting a nec-

essary trade-off between avoiding congestion and reducing

path latency when traffic demands vary; and

• characterizing a routing approach that avoids the patholo-

gies to which existing approaches fall prey on path-diverse

topologies, that parsimoniously yet safely applies head-

room to cope with demand variability, and that is computa-

tionally tractable at ISP scale.

This approach to routing can perform well on all topologies,

but it performs especially well where the topology offers a

good diversity of low-delay paths. We speculate that such

topologies may be rare today because they have been hard to

use effectively with existing routing schemes. The adoption

of techniques similar to those presented may eliminate this

obstacle to building more “mesh-like” network topologies

well suited to low-latency, congestion-free traffic delivery.

2 ASSESSING TOPOLOGIES’
POTENTIAL FOR LOW LATENCY

If an operator wishes to build a network well-suited to pro-

viding robust low-delay communication, how would they

measure the extent to which they had succeeded? One could

say a topology offers low latency if the shortest paths between

points of presence (PoP) lie close to the corresponding great

circle routes, but this falls short as a metric for two reasons:

• Geographic, geopolitical, and economic constraints limit

where links can reasonably be provisioned.

• Shortest paths may end up congested if demand diverges

from that envisaged during provisioning, leading to queu-

ing delays and loss. Avoiding congestion without massive

over-provisioning requires using alternate, longer paths.

We don’t claim any deep insight into geopolitical or eco-

nomic constraints that limit link deployment. For now, let us

consider only network links that exist in real ISPs.

What we would really like is a metric, agnostic to both rout-

ing and traffic, that characterizes how well suited a topology

is to providing robust low-latency communication. Although

the shortest paths in a network may not be ideal, they are

the best paths we are sure are viable to provision. How well

suited is a network topology to providing low-latency service

under traffic loads that are not trivial to route?

To derive such a metric we start from a network map that

includes all PoPs and link latencies. For each PoP pair, we

compute the lowest latency path. Then for each link on the

path, we consider the latency cost to route around that link if it

were congested. If the map contains link capacities, we must

also take these into account. For example, it is unreasonable

to consider a 1 Gb/s link as providing a viable alternate to a

congested 100 Gb/s path. We consider an alternate path as a

viable alternate if its bottleneck has at least the capacity of the

bottleneck on the shortest path. If there are multiple alternate

paths, we progressively add the n lowest latency alternate

paths until their min-cut is sufficient to form a viable alternate.

When this is necessary, we consider the propagation delay of

the alternate to be that of the nth lowest latency alternate.

We define path stretch to be the fraction da/ds , where the

viable alternate path’s propagation delay is da and the delay

of the shortest path between the two PoPs is ds . We set a

threshold for path stretch—for example, we may consider a

path stretch of 1.4 to be acceptable—and measure alternate

path availability (APA), defined as the fraction of links on the

shortest path that can be routed around without exceeding this

stretch limit. Each PoP pair gives an APA data point in the

range from zero (no links can be routed around without ex-

cessive delay) to one (all links can be routed around). A CDF

of those data points characterizes the network. The resulting

curve gives insight into the availability of low-latency alter-

nate paths, and is scale-invariant, so can be used to compare

networks of different size and geographic scale. This curve
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Figure 1: CDF curves of APA for all networks, given path
stretch limit of 40%. Five random curves are highlighted.

captures the feasibility of routing around hotspots caused by

congestion without dramatically inflating delay.

Figure 1 shows a CDF for each of the 116 networks with

diameter greater than 10 ms in the Topology Zoo (augmented

with computed link latencies [16]).2 Networks vary consid-

erably in how well they provide low-latency alternate paths.

Consider the x-axis value of 0.7; this indicates paths where

70% of links can be routed around without excessive delay.

A corresponding y-axis value of 0.25 indicates that 75% of

paths have low-latency alternates that route around at least

70% of the hops. Thus topologies whose curves are to the

lower right on this graph provide usable path diversity.

A few curves are horizontal lines; these are clique topolo-

gies. We understand these to be overlay networks; for exam-

ple, one is an older network provisioned using ATM virtual

circuits. Overlays are not really interesting from our point of

view: the ISP likely uses the overlay technology to provision

on demand, rather than rely on intra-domain routing.

To reduce each curve to a single metric for each network,

we compute low latency path diversity (LLPD) as follows.

LLPD =
number of PoP pairs with APA ≥ 0.7

total number of PoP pairs

The choice of 0.7 here is not crucial; as Figure 1 shows, the

rank ordering does not change greatly if we choose a different

threshold in the upper half of the distribution.

An LLPD of close to one indicates that for most PoP pairs,

we can route around most of the links on their shortest path

without incurring excessive delay. Conversely, we observe

an LLPD of close to zero usually indicates a more tree-like

network. Networks with mid-range LLPD often consist of

wide rings: while they have path diversity, the latency cost of

going the “wrong way” around the ring can be high.

Networks with high LLPD typically fall in two categories.

Some are well interconnected, resembling a two-dimensional

2The Topology Zoo is not without limitations; some topologies are rather

old, and PoP locations are often unverified. Nevertheless, it gives a useful

view of diverse WAN topologies over time; even older topologies elucidate

then-current backbones’ delay characteristics.

Figure 2:
GTS’s Central
Europe topology.

grid. An example of this class is GTS’s network in central

Europe, shown in Figure 2. Others, such as Cogent, span

more than one continent, with good path diversity between

continents. The long latency baseline between continents

makes it easier to score well on latency stretch, but high

LLPD also requires good connectivity within continents.

3 PATH DIVERSITY IS HARD TO USE
In earlier work [21] we showed using small synthetic exam-

ples that two-dimensional grid networks can be hard to route,

as they inadvertently concentrate traffic. We use LLPD to

understand to what extent this is a problem in real networks.

For each topology from the Topology Zoo we synthesize

100 traffic matrices, each representing a moderate load for

that network’s available capacity. To do so, we use a variant

of the gravity model [39]. This model generates traffic aggre-

gates between PoP pairs according to a Zipf distribution, as

real-world traffic has been characterized. The original model,

however, ignores geographic proximity between endpoints.

By contrast, many content providers today place content ge-

ographically near to users, yielding greater traffic locality.

To see how traffic locality affects routing, we extend traffic

matrix generation with a locality parameter. The original grav-

ity model dictates the ingress and egress traffic volumes at

each PoP; our extension moves load among aggregates that

span different distances according to the locality parameter.

For values greater than zero we redistribute some traffic from

longer-distance flows to shorter-distance ones. Specifically, a

locality parameter of � allows short-distance flows to increase

by � times their original demand.3 We find that a locality of

one suffices to add significant locality, while larger values

tend to under-load long-distance links too much to justify

their presence in the topology. Unless stated otherwise, we

use a locality value of one in our analyses.

3We express these constraints in a simple linear program whose solution

yields per-aggregate traffic volumes; we refer the interested reader to [20]

for full details.
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Figure 3: Networks with high LLPD tend to concentrate
traffic when using SP routing.

We scale each traffic matrix so that the network is moder-

ately loaded, but not close to being overloaded. The goal is

that with optimal routing it is still (just) possible to route the

network without congestion if all traffic increases by 30%.

This gives a network where, if we minimize maximum link

utilization, the min-cut has 23% headroom4. In most topolo-

gies this corresponds to a median link utilization of 20-30%.

Shortest path routing. We first look at how shortest-path

routing [33, 36] performs when link costs are proportional

to delay. Figure 3 shows the median and 90th percentile of

congested source-destination pairs across all topologies and

traffic matrices, when networks are sorted by their LLPD

value (on the x-axis). The figure shows that under moder-

ate load shortest-path routing tends to concentrate traffic in

networks with multiple low-latency paths (high LLPD).

One conclusion is that networks with good LLPD are not

designed to be used with shortest-path routing. Such networks

have many low-latency alternative paths, and it seems likely

that they have evolved to be run with a traffic engineering

scheme able to use these alternative paths. To understand the

interplay between topology and routing, we need to examine

them using active load-dependent routing systems.

Latency optimality. In Figure 4 we show the performance of

active routing schemes. The top of each graph is the same as

in Figure 3; it shows the fraction of paths that are congested.

The bottom half of each graph is inverted and shows latency

stretch, calculated as
∑

f df /
∑

f df ,sp , where df is the delay

seen by flow f when routed by the scheme, and df ,sp is the

shortest path latency between that source and destination.

Figure 4(a) refers to an optimal routing scheme, where opti-

mality is expressed as minimizing the sum of the propagation

delays seen by all flows. Specifically, this scheme minimizes∑

a

na
∑

p∈Pa
xapdp (1)

subject to the constraints that no link is overloaded and all

flows are routed. Here, na is the number of flows in aggregate

a, Pa are the paths a may take, dp is the propagation delay of

path p, and xap is the fraction of a’s traffic routed on path p.

4Min cut load is 77%, so the traffic can increase by a factor of 1
0.77 = 1.3.

Figure 4(a) shows that it is possible to route all traffic with-

out causing excessive delay stretch. An exception, Globalcen-

ter, is a full-mesh topology, so likely is an overlay network

where it makes little sense performing dynamic routing at the

IP level. Grid-like networks such as GTS and diverse intercon-

tinental networks like Cogent that were prominent in Figure 3

give low delay with this sort of optimal routing, which can

make very effective use of their low-delay path diversity.

Greedy low latency routing. How do deployed traffic engi-

neering schemes perform? Automatic bandwidth allocation

for MPLS-TE [42, 43] considers one aggregate at a time,

and places each aggregate on its shortest non-congested path.

B4 [25] uses a central controller to assign traffic from aggre-

gates with a slightly improved algorithm. It starts by incre-

mentally placing traffic from each aggregate onto its shortest

path. This is done in parallel for all aggregates. When an

aggregate’s shortest path fills up, B4 starts allocating that ag-

gregate onto the next shortest path, and so forth. Hence, while

it considers low-latency paths first, B4 still uses a greedy al-

gorithm. B4 includes prioritization for subsets of traffic. We

give all traffic equal priority, as it is generally unclear how an

ISP should prioritize demands. In the following, we focus on

B4 but the same observations also hold for MPLS-TE.

Figure 4(b) shows the performance of B4 on the topolo-

gies from the Topology Zoo, with the same parameters as in

Figure 4(a). B4 matches the optimal performance on many

of the simpler networks. However, for most of the networks

with mid-range LLPD, B4 gives slightly sub-optimal latency.

Even more interestingly, it induces congestion on some of the

networks with greatest path diversity: for GTS and Cogent, in

particular, more than half of B4’s paths cross a saturated link

in the median case. Clearly, B4’s greedy strategy frequently

becomes locked into local minima in these topologies.

In [21] we reported a similar effect, and showed a synthetic

topology susceptible to Braess’s paradox [3]. We initially

suspected that this was what was happening here too, but in

fact there are other more likely local minima that can trap

B4. Consider the part of GTS’s network shown in Figure 5.

This is a central part of this network, and a large number of

aggregates flow through this region. Consider the aggregate

from Veszprem (V) to Gyor (G). As B4 allocates traffic, link

1 fills up in the eastbound direction, occupied by the green

and many blue aggregates. B4 would normally then start

to allocate capacity on the second-best paths. For the blue

aggregate of traffic flows, this is possible. However, if there

are more red aggregates than blue ones, B4’s algorithm will

have already filled link 2 in the westbound direction with

red traffic. There is no spare capacity for the green traffic

as both link 1 eastbound and link 2 westbound are full, and

these are the only links out of V. Of course, this example is a

simplification of the real traffic allocation. In reality, the red

and blue aggregates are hundreds of different aggregates, and
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(d) MinMax K=10

Figure 4: Effects of active routing on congestion and delay.

other flows, not shown, are also present. However, the figure

captures the basic cause and effect of B4’s greedy choices.

The example shows that B4 cannot avoid congestion in this

well-connected part of the network. In contrast, an optimal

placement would move red traffic aggregates onto the frac-

tionally longer path through G, allowing room for the green

traffic on link 2, and so avoiding congestion.

Even when B4 can fit the traffic, latency can be excessive.

In Figure 6, two aggregates share a bottleneck link on their

shortest paths. B4 will allocate this link equally between the

two aggregates until it fills, then start filling the next-shortest

path for each aggregate. However, the next-shortest paths

have different latency costs, with the blue aggregate needing

to take a long detour. It would have been better to allow

the blue aggregate to remain on its shortest path, and move

more of the red aggregate to its second-best path, as there is

minimal latency cost to the red aggregate from doing so.

MinMax based routing. Other traffic engineering schemes

such as TeXCP [27] and MATE [11] take the MinMax ap-

proach. A pure MinMax approach optimizes traffic placement

so as to minimize the maximum link utilization. This is in-

sufficient, as it does not generate unique solutions—many

possible placements may have the same maximum link uti-

lization, including ones with very suboptimal high-latency

paths. One way to obtain a practical routing system is to min-

imize the sum of path latencies as a tie-break between traffic

placements with equal maximum link utilization.

By definition, MinMax will fit the traffic if it is possible

to do so, and Figure 4(c) shows no congestion. However, by

focusing on utilization first and only using latency as a tie-

break, many aggregates suffer significantly higher latency

than they would with optimal routing (see Figure 4(a)). The

reason is not complicated: to reduce maximum link utilization,

some aggregates are forced over circuitous paths.
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Figure 5:
Inadvertent
congestion
on GTS
using B4.

Figure 6:
Excessive
latency
in the GTS
topology
using B4.

To prevent long paths from being selected unnecessarily,

routing schemes such as TeXCP limit path choice to the k
shortest paths. The intuition is that if long paths are never

given to the MinMax algorithm, a good balance will be struck

between reducing latency and minimizing peak utilization.

Figure 4(d) shows the results of running the MinMax algo-

rithm using latency to tie-break, but supplying only the ten

shortest paths, as suggested by TeXCP. For most networks

with lower LLPD, there is little difference between full Min-

Max and MinMax with k = 10. These networks have little

low-latency path diversity, hence some of the ten shortest

paths are long. For networks with high LLPD, things are

more interesting. Limiting path choice clearly improves la-

tency, though it is still worse than under B4. However, now

MinMax can no longer always avoid congestion; networks

with high LLPD have a very large number of possible, often

non-disjoint, paths, so simply limiting choice to the k best for

a constant k is insufficient to avoid congestion.

4 THE HEADROOM DIAL
So far we have considered traffic as a fixed quantity that

can be packed into a network. Real network traffic is neither

constant in rate nor entirely predictable. A plausible option

for a practical routing system is to reserve some minimum

fraction of each link’s capacity to accommodate foreseen but

rare demand increases. We refer to this fraction as headroom.

Living on the edge. Let us first examine how minimizing

delay uses links’ capacity. We consider again the GTS net-

work, which has high LLPD. Figure 7 shows CDFs of link

utilization using latency-optimal placement and our MinMax

formulation, the two extreme approaches in terms of link

0.0 0.2 0.4 0.6 0.8 1.0

link utilization
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0.5

1.0

C
D
F

Latency-optimal (mean 0.32)
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Figure 7: Link utilization in GTS’s median case in Fig 4.

utilization, for the median of GTS’s traffic matrices from Fig-

ure 4. The median latency stretch for this topology is 15%

for MinMax and 4% for latency-optimal routing. Despite this,

Figure 7 shows that most links are lightly loaded and exhibit

similar utilization under both schemes. Clearly, what matters

is how loaded the most desirable links are.

Figure 7 also highlights that the few busiest links are loaded

very close to 100% in the optimal routing scheme. No real

network would be deliberately operated with such extreme

link utilizations, since traffic variability would cause (short-

term) queuing which in turn would add delay. In practice

some degree of headroom must be left on links.

We can regard headroom as a dial that can be controlled by

the routing system. We can calculate latency-optimal paths

for a given value of headroom by simple scaling down link

capacities by the chosen headroom and running the optimal

routing scheme on the modified topology. With headroom

set to zero, we get the latency-optimal curve, but short-term

queuing will adversely affect traffic. If we set headroom to

the value MinMax calculates as the maximal free capacity on

the busiest links (about 23% in Figure 7), then the latency-

optimal algorithm converges with MinMax, giving identical

traffic placements. In between the two lies the viable range

of traffic placements that all fit the traffic, but which trade off

latency against headroom to accommodate traffic variability.5

Two key questions emerge from this view of headroom:

• How much headroom can be left before it starts to greatly

impact latency?

• How much headroom is needed to statistically multiplex

busy links without causing excessive short-term queuing?

Headroom vs. latency. To see the effect of increased head-

room on latency, consider Figure 8. This plot shows the me-

dian latency stretch as headroom is increased, when perform-

ing latency-optimal routing. To see the trend more clearly, we

start with a slightly less loaded network - one in which the

traffic matrix could be scaled by a factor of 1.65 before it is

no longer possible to fit the traffic (i.e., the min-cut of the

network is loaded at 60%). We then progressively increase

the reserved headroom in steps from 0% reserved headroom

5Figure 4 shows that B4 and MinMaxK10 sometimes lie outside this range.
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Figure 8: Latency stretch as headroom is increased.

to 40%. For this traffic level, with 40% headroom the latency-

optimal placement converges with the MinMax placement.

The most prominent spikes with high LLPD are again from

the clique networks; as noted before, these are less interesting

because they are overlay networks, so have alternative ways to

mitigate congestion. With the exception of these cliques, the

other networks show relatively little delay stretch as headroom

increases. This is the case even for networks with high LLPD.

Only as headroom finally reaches the extreme of MinMax

does delay stretch really increase greatly.

The implication is that it is probably unnecessary to live

right on the ragged edge of triggering congestion to get paths

with reasonably low latency. At the same time, minimizing

headroom will normally decrease latency, so it is likely to be

worthwhile actively estimating how much headroom is really

needed to avoid significant transient queues building.

How much headroom is needed? Any load-dependent rout-

ing system must use estimates of traffic volumes to make

its routing decisions. These estimates are inevitably imper-

fect. Suppose, for example, that the routing system recalcu-

lates routes every minute. Two factors need to be considered.

First, how predictable is the mean traffic rate from minute

to minute? Second, how well does short-term variability of

aggregates sharing each link statistically multiplex? If we can

answer these questions, we can decide how much headroom

needs to be allocated when calculating paths, so as to mini-

mize propagation latency while avoiding queuing latency.

Prior studies indicate that mean traffic demands are pre-

dictable over minute-long timescales on a WAN, and are

more predictable than demands on a LAN [37]. Furthermore,

a more recent study of Google’s WAN [22] measures a typical

backbone link’s utilization, which varies less than 10% from

minute to minute. To see whether the same conclusions might

hold for ISP traffic, we analyzed the best publicly available

traffic data. These CAIDA packet traces date from 2013 to

2016, and contain all packet headers from four 10 Gbps links

within a U.S. Tier-1 ISP’s backbone [5]. For each link we

have 40 one-hour traces, typically ranging from 1 to 3 Gbps.

Algorithm 1: Predicting next minute’s mean level.

prev_value // Value measured last minute
prev_prediction // Value predicted last minute
decay_multiplier ← 0.98 // 2% decay when level drops
f ixed_hedдe ← 1.1 // 10% hedge against growth
scaled_est ← prev_value ∗ f ixed_hedдe;

if scaled_est > prev_prediction then
next_prediction ← scaled_est ;

else
decay_prediction ← prev_prediction ∗decay_multiplier ;

next_prediction ←max (decay_prediction, scaled_est );
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measured bitrate / predicted bitrate
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Figure 9: Predictions of mean traffic level (Tier-1 ISP).

We compute the mean traffic level for each minute and

apply Algorithm 1 to predict the mean rate in the next minute.

This implements a simple conservative strategy: the estimate

increases in line with values measured during the last minute,

and decays slowly when the measured rate decreases. The aim

is aggregates can grow by 10% before exceeding our target.

Figure 9 shows a CDF across all the CAIDA traces of

measured mean bitrate in the next minute divided by pre-

dicted bitrate. If the traffic were constant, all values would

be 1/1.1 = 0.91. The traffic is very predictable on minute-

to-minute timescales: only 0.5% of the time does the actual

traffic exceed the target, and then never by more than 10%.

From these traces, we tentatively conclude that 10% link

headroom may be sufficient to allow changes in mean traffic

rate from minute to minute. When several such aggregates are

placed on the same 10Gbps or 100Gbps core link, it is very

unlikely they will all exceed their predicted values simultane-

ously, so in many cases less headroom may be needed. There

is a limit to what we can conclude from such traces though:

although they do measure Tier-1 backbone traffic, we simply

do not know if they are typical of other ISPs.

We also see significant variability on sub-second timescales.

We measure the bit-rate from the CAIDA traces each millisec-

ond, and calculate the standard deviation of these values for

each minute. Figure 10 is a scatter plot of the standard de-

viation in minute t plotted against the standard deviation in

minute t + 1. Different colors map to different traces, though

some colors are reused. The absolute value of standard devia-

tion spans a large range, but the points are tightly clustered
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around the x = y line, indicating that traffic variability does

not greatly change from one minute to the next. In these

traces, the variability of each aggregate can therefore be char-

acterized so that a routing system can predict how aggregates

statistically multiplex. In turn, such a prediction can be used

to adjust the headroom needed on a link-by-link basis.

5 DEALING WITH SCALABILITY AND
TRAFFIC VARIABILITY CHALLENGES

Given the inability of existing routing schemes to leverage

topologies’ potential for low latency traffic delivery, the ob-

vious question is whether it is possible to design a practical

routing system that both computes low-delay paths and auto-

matically fine-tunes the headroom dial.

Since we aim for close-to-optimal paths, a centralized de-

sign seems a promising starting point. Any centralized load-

dependent routing system must progress through three stages:

measure network demand; calculate paths; install paths in

routers. Others have deployed working solutions of this form,

especially for modern private WANs [23, 25, 28].

We are primarily interested in the feasibility of the low-

delay path calculation stage. To calculate paths, the central-

ized controller needs traffic measurements. We assume that

ingress routers can measure traffic, and can report traffic vol-

umes and approximate numbers of flows to the controller.

For the former information, they periodically send the con-

troller batches of traffic counter values. Those values can

be collected by reading hardware counters multiple times

each second, as demonstrated in [8, 32]. For the latter, ingress

routers can use known techniques to track the number of flows

per aggregate – e.g., through specific hardware support [12]

or estimations from sampled mirrored packet streams [9].

Given this data, the controller has to calculate the nec-

essary headroom, reserve this capacity, and then optimize

traffic placement so as to minimize latency subject to the

constraint of avoiding congestion. This is challenging for

two reasons. First, the optimization itself may be expensive

on large networks that provide good LLPD, since by defini-

tion they have many (low-latency) paths. Second, computing

necessary headroom involves understanding how aggregates

Figure 11: High-level overview.

statistically multiplex, and this in turn depends on which

aggregates might share a link. How should an intra-domain

routing system design address these two challenges?

Design overview. For the path computation to scale on large,

dense networks and to account for aggregates’ multiplexing,

a centralized controller can iterate through three phases, as

shown in Figure 11:

(1) find the best low latency solution, using current estimates

of needed headroom.

(2) appraise how well the proposed solution statistically mul-

tiplexes on busy links.

(3) tweak headroom when multiplexing is unsatisfactory, and

repeat from (1).

This approach requires that finding low latency solutions and

checking statistical multiplexing are both fast, as online route

computation needs to run in seconds.

Path optimization. Given tentative values for headroom, for-

malizing the optimization problem is relatively simple. One

way to do it is to cast path selection as a multi-commodity

flow problem, with one commodity per aggregate, in the spirit

of Bertsekas et al. [2]. However, the size of this optimization

model scales with the product of number of aggregates and

number of links, hence this approach may quickly become

impractical for large networks with high LLPD.

An alternative path-based formulation is shown in Fig-

ure 12. This is not only more efficient, but also better suited

to iterating for adjusting headroom. Despite being similar to

a standard path-based formulation of the multi-commodity

flow problem, a few differences are worth noting.

If aggregates’ demands globally exceed the capacity of

possible paths, congestion cannot be avoided. In this case the

formulation spreads traffic as equally as possible across all

links, as expressed by the last term of the objective function.

Otherwise, the formulation selects the lowest-delay paths

subject to the constraint that they avoid congestion; M2 is

large to ensure this term dominates. Once this term is satisfied,

the delay minimization term determines the choice of paths.

This term has two factors: the first factor minimizes the sum of

path latencies, while the second factor guarantees uniqueness

of the solutions, hence predictability of routing. If there are

two aggregates competing for a link, and moving either of the
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Figure 12: Linear Program for latency optimization.

two to a longer path yields the same total delay, this second

factor ties-breaks by moving the aggregate whose RTT is

already larger – e.g., giving more predictable latency based

on geography, and fitting better with how CDNs work. To

ensure this is only a tie-break, M1 is a very small constant.

To directly optimize this model using a linear program

(LP) solver would require all possible paths for all aggregates

be considered. Such a direct approach is inefficient for large

networks with high LLPD, which are precisely the ones which

we expect to benefit the most from this optimization approach.

Fortunately, this is not necessary, given the path-based

objective function above. Consider an aggregate that does not

fit on its shortest path. An optimal solution places as much

traffic as possible on the shortest path, then allocates the rest

to the next-best path. If the next-best path is not congested,

adding further paths for this aggregate serves no purpose, as

they will never be used. Essentially, there is a “delay threshold”

for each aggregate, beyond which paths of longer delay will

never be used. We don’t know this delay threshold a-priori,

but we can learn it from successive runs of the LP solver.

The above approach is represented in Figure 13. We asso-

ciate each aggregate with the list of its k shortest paths, where

initially k = 1. We formulate an LP where possible paths for

each aggregate are those from its list. We then solve the LP

and look for links that are maximally overloaded – i.e., such

that Ol = Omax > 1. For all aggregates that cross those links

we extend the list of paths by generating shortest paths for an

increasing k , run the LP again and repeat. We iterate until we

find paths with no overloaded links.

Even though this approach involves multiple runs of the LP

optimization, it actually runs very quickly because the number

of variables (paths) in each run is small. The bottleneck is not

the linear optimizer, but the k shortest paths algorithm [49],

the results of which can be readily cached. This yields sub-

second runtimes even with tens of thousands of aggregates.

Figure 13: Obtaining paths and per-path aggregate frac-
tions, assuming each aggregate’s demand is known.

Figure 14: Iteration to assess statistical multiplexing.

Link multiplexing check. Given a representative demand Ba
for each aggregate, the iterative LP approach will compute

a latency-optimal solution. Unfortunately aggregates cannot

be characterized by their mean bitrate; doing so will cause

excessive queuing if no headroom is allocated. Since different

aggregates have different variability, the headroom needed

to allow for statistical multiplexing depends on which aggre-

gates are placed onto each link. However, to determine which

aggregates should share a link, the LP optimizer has to know

how much headroom to leave. How can we break this cycle?

Our strategy is shown in Figure 14. First we compute a

prediction of the mean rate for each aggregate, based on its

measured behavior from the last minute. Using mean values

as an initial estimate of Ba , we perform a preliminary op-

timization of aggregate placement onto paths. We then use

the short timescale traffic measurements from the ingress

routers to assess whether these aggregates will statistically

multiplex well enough on each link. If this test passes for all

links, then the traffic placement is good. If it fails for any link,

we scale up Ba for those aggregates traversing that link, and

re-optimize ( A in Figure 14). Scaling up aggregates serves

to add headroom, but only for those aggregates that don’t

multiplex well. The alternative—scaling down the link speed

to add headroom—is less effective, as it prevents other less

variable aggregates being chosen to use the link instead.

Aggregates may fail to statistically multiplex, either be-

cause traffic bursts are temporally correlated [13], or because
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these aggregates are very variable and statistically likely to

exceed capacity of the links they share. Testing for temporal

correlation ( B in Figure 14) is simple. For each aggregate,

the controller has measurements of data transmitted in each

100 ms period. It simply sums the values from each aggregate

for each corresponding 100 ms period to test if the link’s band-

width would be exceeded. If it is, the excess traffic would be

queued, so is carried over to the next 100 ms period. The con-

troller rejects any solution yielding transient queuing delays

that exceed a maximum allowed value (say, 10 ms).

To evaluate uncorrelated multiplexing ( C in Figure 14),

we can treat aggregates as random processes, each with a

different discrete distribution given by its 100 ms bandwidth

measurements. When these aggregates multiplex on a link, we

care about the resulting multiplexed bandwidth distribution.

We treat each aggregate’s measurements as a probability mass

function (PMF). For each link, we take the convolution of

the PMFs of aggregates that cross that link, and examine the

convolved PMF. If the probability that this PMF exceeds the

link’s capacity is below a threshold, we can conclude that the

aggregates will multiplex well enough to fit. The threshold

comes again from the maximum queue we wish to allow—if

we allow 10 ms queues and the measurements span an interval

of 60 seconds, the threshold would be 10
60000

= 0.00016.

Despite having tens of thousands of aggregates, each with

a different PMF, two optimizations allow all the needed con-

volutions to be performed in milliseconds. First, we don’t test

multiplexing on a link if the sum of the 100ms peak traffic

levels of all aggregates placed on that link does not exceed the

link capacity: those links are indeed guaranteed to pass both

tests. Second, since convolution in the time domain is equiva-

lent to multiplication in the frequency domain, we can transfer

data to the frequency domain using a Fast Fourier Transform

(FFT), multiply the frequencies, and invert the FFT to get the

convolved distribution. This algorithm runs in O (N logN )
time, where N depends on the quantization applied to the dis-

crete time-domain data. We experimentally found that 1024

levels per distribution yields good performance.

Feasibility. For conciseness, we refer to the iterative latency-

optimal routing algorithm described above as Low Delay

Routing (LDR). To be practical, LDR must be able to calcu-

late paths quickly on large, dense networks. Figure 15 shows

CDFs of the runtime of the LDR algorithm on the Topol-

ogy Zoo networks whose LLPD exceeds 0.5; these are the

hardest to route. Several of these topologies are of significant

scale: the greatest number of nodes is 197 (90th percentile:

74 nodes) and the greatest number of links is 243 (90th per-

centile: 96 nodes). The “LDR” curve includes caching of

the k shortest paths, whereas the “cold cache” curve shows

the first run, before the cache is populated. For comparison,

the “link-based” curve shows that a multi-commodity flow

formulation of the same optimization is about two orders of
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Figure 15: Run time of optimization algorithms.

magnitude slower. We conclude that the LDR approach is fast

enough to use in online centralized routing systems.

6 LATENCY, LOCALITY, LOAD & LLPD
With a practical latency-optimal routing system to compare

against, let us revisit the landscape to better understand the in-

teractions between topology, traffic locality, load and latency.

In general, the higher the LLPD, the harder it is to route

a network using shortest path routing, but the more options

an active load-dependent routing system has to move load

around. With more options, heuristic algorithms such as B4

and MinMaxK10 can get stuck in a local minimum. Under

low load this is not usually a problem, but as load increases

and the routing system moves more traffic onto longer paths,

getting stuck in a local minimum becomes more likely.

Under very high load we see that unrestricted MinMax be-

comes close to optimal, as options for re-routing become lim-

ited. However, under low loads MinMax chooses circuitous

routes as it tries to minimize peak link utilization.

Traffic locality also plays a role here, though different

routing schemes are affected differently. If we set the locality

parameter to zero, increasing the mean distance that traffic

travels, we observe that B4 becomes significantly less optimal

as it fills the best long distance paths first, forcing some sub-

optimal routings thereafter. On networks with low LLPD,

when locality is low, both MinMax algorithms may increase

latency significantly. This is common on topologies with large

rings, where MinMax often routes traffic the long way round

the ring in pursuit of reduced utilization on the shorter path.

Conversely, increasing locality beyond our default value of

one has little effect on any routing scheme.

Finally, we must discuss headroom in the context of B4.

B4 was designed for use on Google’s network with controlled

traffic sources. If we wish to use it for ISP networks, we will

also need to add headroom. Our formulation for assessing traf-

fic predictability and statistical multiplexing is quite general,

so we can also apply it to B4 to calculate desired headroom.

When we do so, we find that headroom interacts with B4

in an interesting manner. Consider again the GTS topology

in Figure 5, where B4 became congested. If we allow, say,

10% headroom, B4 will stop short of saturating all the links

on the first pass, and move on to placing some of the long
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Figure 17: Effect of load on median latency stretch

distance traffic on the slightly longer path via G. If the traffic

from G→V that B4 failed to place can fit within the reserved

headroom, then it can still be routed after all other traffic has

been placed. Of course, the headroom was there to mitigate

transient congestion, and now less headroom is available, so

queuing is more likely. Still, we observe that congestion is

less likely with B4 when explicitly allocating headroom.

Let us examine some measurements that illustrate the ob-

servations above. First, how does LLPD and headroom affect

latency stretch? Figure 16 shows CDFs of the maximum path
stretch for each traffic matrix under the same conditions as

Figure 4 (min-cut 0.7 load and locality 1). The different curves

illustrate the effects of LLPD and headroom. In Figure 16(a)

we see the networks with low LLPD. These networks have

few low-latency alternate paths; for some topologies and traf-

fic matrices the maximum stretch is very high - over 100x in

the limit with B4. There is not much to choose between the

four algorithms here, as the topologies don’t provide many

routing options. No headroom is reserved in Figure 16(a), but

adding 10% headroom makes little difference to the CDF.

Figures 16(b) and 16(c) show the networks with high LLPD.

Where the CDF fails to reach 1.0, this indicates that in the

remaining scenarios the routing system could not find a place-

ment that would fit all the traffic. This happens with both

B4 and MinMaxK10. When headroom is added, B4 can fit
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Figure 18: Effect of locality on median latency stretch

traffic in a wider range of scenarios, though these graphs

don’t capture the degree to which B4 eats into the supposedly

reserved headroom to do so. B4 also pays a latency price

in such cases. LDR with headroom and MinMax give very

similar maximum stretch; this is mostly because our MinMax

formulation optimizes for latency once its utilization goal has

been satisfied. As we saw in Figure 8, LDR with headroom

and MinMax exhibit very different median latency stretch.

To understand how robust the results are as load changes,

we examine the median latency stretch across all traffic matri-

ces in the topologies with LLPD greater than 0.5. In Figure 17

we observe how this changes as we increase overall load. B4

is quite sensitive to high load levels in these networks, but the

other schemes are not. Note that at low load, when everything

fits on the shortest path, B4 is optimal, whereas at high load,

the MinMax and optimal curves converge.

Figure 18 shows the same metric as we adjust the locality

of the traffic matrix. A locality of zero tends to load long

distance links more, whereas localities above one tend to load

local links more. B4 is especially sensitive to congesting the

wide-area links, so a traffic matrix with low locality tends to

hurt latency. The MinMax algorithms don’t congest the wide-

area links, but they do load-balance more traffic off them than

is strictly necessary, so they also exhibit increased latency

with low locality. All the schemes give better results when
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the traffic matrix exhibits higher locality, though the MinMax

curves are rather level with locality greater than 1.5.

7 RELATED WORK
The research community has previously devoted attention

to topology, routing, and demand in ISPs’ backbones, but

prior work has typically discussed each of these aspects in

isolation. For example, studies of WAN topology design and

optimization [4, 18, 38] ignore the network’s routing system.

We have shown that it is critical to consider the interplay

between topology and routing—e.g., the routing system may

impose constraints on how the topology can be evolved (§8).

Measurement studies [34, 41] consider the impact of fac-

tors including topology and (BGP) routing policies on inter-

domain path latency. In this work we focus on intra-domain

routing, and show that it significantly impacts path latency in

WANs. The flattening of the AS-level hierarchy [17] and the

rapid increase in popularity of Content Delivery Networks

are also likely to magnify the impact of intra-domain routing.

Most prior intra-domain routing systems [11, 27, 30, 46]

focus on maximizing spare link capacity, a problem pro-

foundly different from the delay minimization one we study.

These two problems’ different natures also motivate oblivious

and semi-oblivious approaches [7, 31]—while maximizing

spare capacity is inherently more robust to demand fluctua-

tions, delay minimization requires judicious application of

headroom to keep paths as low-latency as practicable while

maintaining slack capacity for demand spikes.

We are far from the first to look at low-delay routing. Gal-

lager [14] provides a general LP-based definition of path

optimization problems whose objective functions can encom-

pass delay. Follow-on contributions [26, 45, 47] consider the

problem of minimizing per-packet latency, assuming that de-

lay is a function of the load on traversed links—which is the

case if those links are bottlenecks. In the WAN scenario this

is often not the case, as most flows that traverse the network

are already bottlenecked at a slower access link.

Alternative mechanisms, e.g., based on specific queuing

schemes [19] or new transport layer mechanisms [48, 50],

can also provide low latency, especially to delay-sensitive,

short-lived flows. However, those mechanisms require precise

information about latency-sensitive and latency-insensitive

flows that ISPs typically do not have (but see §8).

We are also not the first to advocate for the importance of

delivering Internet traffic with low delay. Recent contributions

span specific intra-datacenter solutions [1] to more general

techniques for use in networked systems [44], and calls to

arms for the research community [40]. We contribute a sys-

tematic study of the interplay between routing and topology,

and leverage that understanding to describe a new approach

to routing that can best exploit low-latency path diversity.
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Figure 19: Same shortest-path routing data as in Figure 3,
but with Google’s topology (LLPD = 0.875) added.

8 DISCUSSION
We have explored the interplay between the diversity of low-

latency paths in a topology and the ability of a routing scheme

to exploit that diversity to achieve congestion-free, low-delay

traffic delivery. While we have taken an initial step toward

routing that better harnesses this diversity in today’s ISP

topologies, important questions in this area remain.

Modern enterprise networks. The Topology Zoo consists

largely of transit networks from recent decades, most of which

were not designed with dynamic, latency-minimizing routing

in mind. How do state-of-the-art enterprise networks com-

pare? We examined a wide-area global enterprise network

owned by Google [24]. In Figure 19 we revisit the behavior

of delay-proportional shortest-path routing by augmenting

Figure 3 with results for Google’s network. The new data-

point clearly exhibits the greatest LLPD among all topologies

and, unsurprisingly, cannot be routed using shortest paths

alone. Google’s own B4 in fact performs nearly optimally on

this network without exhibiting the pathologies in Section 3.

We conjecture that this topology was explicitly designed for

dynamic latency-minimizing routing. We believe it to be an

important existence proof that it is possible and economically

viable to build a high-LLPD network that spans the globe. We

note though that an enterprise network can control traffic at

endpoints, so demand may be more predictable than at an ISP.

Does routing influence topology? The ISP topologies we

have studied were designed to be used with pre-existing rout-

ing schemes. Have routing systems’ limitations constrained

how networks themselves have grown? Apart from the ex-

ample of B4 and SNet, we cannot definitively answer this

question without deploying an optimal routing system and

waiting a decade or so to see how ISPs upgrade their networks.

Nor can we accurately determine which topology upgrades

might be likely; we have no model for the economic and

geopolitical constraints that gate new link deployment. We

can, however, examine the extent to which topology upgrades

enable better service from today’s routing systems. When

adding links to a topology in principle ought to improve ser-

vice but in practice does not, an ISP wouldn’t likely choose to
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grow the network in that way. If, however, the ISP had a rout-

ing system that could harness those added links to improve

service, the ISP would see benefit in adding them.

We examined four networks that are difficult to route with

low latency, even with optimal traffic placement. The net-

works chosen are those from Figure 4(a) with high latency,

but we exclude those with clique topologies, to which we can-

not add links. We use the LLPD metric to determine which

additional links might confer the greatest benefit. Of all the

links to be possibly added, we add the one that gives the

greatest increase in LLPD. We then repeat this process until

the number of links has increased by 5%. As each link added

improves LLPD, the resulting network will, in principle, be

more amenable to low-latency routing.

Figure 20 shows how much the different routing schemes

profit. As before, load is 0.7 and locality 1. The x-axis and y-

axis respectively show the latency stretch on the original and

enhanced networks. We plot points for each routing scheme:

crosses show median stretch, and dots the 90th percentile.

Ideally, all points would be close to the x-axis. At the very

least, we would hope for the points to be below the x = y line,

indicating that adding links reduces latency.

Only LDR fully takes advantage of the new links, giving

median latency stretch very close to unity. For three of the

networks, LDR’s 90th percentile is less than all other routing

systems’ median latency. B4 can also take advantage of new

links, though it is far from perfect. Both MinMax algorithms

fare much worse. In some cases, adding new links that im-

prove LLPD actually increases latency, as both algorithms

use the links to load balance more widely.

We conjecture on the basis of these preliminary experi-

ments that the routing scheme does determine which links are

best for an ISP to add. Although we cannot be sure that limita-

tions in today’s routing systems prevent ISPs from deploying

lower-latency topologies, it seems that may be the case.

Limits to LLPD’s applicability. We formulated LLPD as

a simple metric to retrospectively assess how well an exist-

ing topology supports the delivery of traffic with low delay.

What about prospectively, to determine which links to add

or increase in capacity when evolving a topology? We don’t

believe LLPD is always the best instrument for predicting

which evolved versions of a topology offer the lowest latency.

Consider an Asia-centered network already with high LLPD

that stretches to Europe in the West and the US in the East.

Adding a single non-redundant transatlantic link would reduce

latency for some Europe↔US traffic, but may actually reduce

LLPD, as there is no low-latency alternate path available.

Even if adding a link increases LLPD, without a routing

scheme such as LDR that can effectively use path diversity,

latency may not decrease, as shown in Figure 20. Where such

a routing scheme is used, if forecast traffic matrices are also

available, then the optimized value of LDR’s objective in

Figure 12 provides a better metric to evaluate the impact of

the adding of new links on latency. Combining this metric

with other constraints to reflect economic and other costs of

link deployment may be a fruitful direction for future work

on optimizing the evolution of a topology.

Extension to differentiated traffic classes. Not all flows

are equal; some applications may be more latency sensitive

than others, though it is not always easy for an ISP to know

which are which. If an ISP does know which flows should be

prioritized, it is straightforward to extend our optimization

framework to split aggregates according to priority, and to

modify the LP constraints and weights so as to prioritize

giving low latency paths to flows that will benefit most.

Generality of building blocks. We believe that LDR’s iter-

ative growth of the set of paths used to route an aggregate and

its convolution technique for determining headroom should

both be of use in other low-delay routing systems. For ex-

ample, B4 assumes no variation in traffic demands, as it is

designed for an enterprise setting in which the routing con-

troller has global knowledge of all sources’ exact rates. The

convolution approach to headroom could be useful in adapt-

ing B4 to the ISP setting. And while MinMax K10’s fixed

choice of the ten lowest-delay paths is bound to be too great

or too small for some aggregates, iteratively growing the path

set for MinMax per aggregate, subject to a bound on delay

stretch, should help MinMax avoid needless detours.

We hope our work can be a first step toward enabling the

deployment of ISP topologies that are better than today’s

for the provision of low-latency service, but remain unbuilt

because today’s routing systems cannot fully harness their

path diversity.
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