
Introduction

Making	a	given	computer	network	support	more	traffic	than	before	by	replacing	the	routing	algorithm	is	an	open
challenge	from	the	networks	area.

The	article	"On	low-latency-capable	topologies,	and	their	impact	on	the	design	of	intra-domain	routing"	from
SIGCOMM	2018	presents	a	metric	that	indicates	how	much	room	to	scale	the	routing	algorithm	will	have	and	an
algorithm	that	takes	advantage	of	such	space.

On	this	video,	the	latter	was	reimplemented	only	from	the	words	in	the	article	and	tested	against	OSPF	on	some
topologies.

Their	Algorithm

The	algorithm	avoids	overload	and	then,	as	a	tie-breaker,	chooses	the	lowest	latency.

That	feeds	a	loop	that	simulates	the	network	and	decides	if	the	overall	state	will	be	better	than	before.

As	the	original	artifacts	used	on	the	article	weren't	located,	this	is	a	blind	reimplementation	which	only	uses	what's
written	in	the	article	as	source.

Initial	challenges

Some	constants	weren't	given	and	their	descriptions	implies	they're	topology-dependant.	Due	to	lack	of	better
explanation,	trial-and-error	optimization	was	attempted,	but	certainly	there's	room	for	improvement	here.

In	places	where	the	exact	algorithm	wasn't	specified,	it	was	granted	the	freedom	to	use	a	trivial	solution	rather	than
an	optimized	one.

Our	implementation's	shortcuts

ARP	and	IPv4	only.
The	controller	gets	the	file	which	describes	the	topology	as	an	commandline	argument.
The	topology	is	static.
Trivial	implementations	rather	than	optimized	ones:
No	impact,	as	all	flow	rules	are	added	prior	to	traffic.
ARP	will	only	use	OSPF:
No	big	deal,	as	such	traffic	can	be	neglected.

Performance	tests

All	performance	tests	were	automated	and	ran	on	an	i7-4790	(4x4GHz	+	HyperThreading)	with	enough	free	RAM
(DDR3@1600MHz).

Let's	say	we	have	9	hosts...
[h1,	h2,	h3,	h4,	h5,	h6,	h7,	h8,	h9]
...and	we	want	to	test	one	PING	and	some	IPERFs.

Our	solution	was	breaking	that	list	in	half...
[h1,	h2,	h3,	h4,	h5]
[h6,	h7,	h8,	h9]
...discarding	the	middle	element,	if	necessary	to	make	the	sizes	the	same...
[h1,	h2,	h3,	h4]
[h6,	h7,	h8,	h9]
...reversing	the	last	half...
[h1,	h2,	h3,	h4]
[h9,	h8,	h7,	h9]
...making	them	one	list	of	pairs...
[(h1,	h9),	(h2,	h8),	(h3,	h7),	(h4,	h9)]
...and	then	saving	the	first	pair	for	PING	and	the	rest	for	IPERFs.
PING	→	(h1,	h9)
IPERF	→	[(h2,	h8),	(h3,	h7),	(h4,	h9)]

With	the	tests	that	will	be	ran	defined,	we	do	them	all	sequentially	and	in	parallel.

Topologies

A	strange	bow	tie	(named	bigtopo).
A	3-stage	CLOS	(named	CLOS)



whose	switches	are	equivalent	to	the	bipartite	graph	k3,2
A	5-stage	CLOS.
A	biparpartite	graph	k5,2,1
A	triangular	topology	(named	principle)

The	longer	path	is	also	slower,	but	becomes	an	interesting	alternative	when	the	main	path	becomes
congested.

Performance	results

While	running	the	algorithms,	it	was	observed	that	the	algorithm	switches	paths	very	often,	sometimes	enabling	and
disabling	a	path.	It's	worth	mentioning	that	both	the	parallel	bandwitdh	and	latency	tests	were	run	simultaneously.

On	sequential	bandwidth	tests,	the	implemented	algorithm	didn't	clearly	display	a	major	advantage	compared	to
OSPF.	It	can	be	obseved	on	the	table	below	that	the	difference	is	small	(if	not	neglectable).

sequential_iperf bigtopo bipartite clos clos5 principle
ospf 233.6	kbps 24210.5	kbps 1158.0	kbps 1150.0	kbps 1150.0	kbps
lowlat 244.0	kbps 24207.2	kbps 1162.0	kbps 1150.0	kbps 1020.0	kbps

On	parallel	bandwidth	tests,	the	same	thing.	While	running	this	test,	it	was	observed	that	the	algorithm	switched
back	and	foward	between	two	or	more	paths,	leaving	at	times,	a	path	completely	unused,	which	indicates	that
something	is	wrong.	When	adjusting	the	M1	and	M2	constants,	such	behaviour	modified,	giving	a	clue	that	they
needed	a	better	tuning.

parallel_iperf bigtopo bipartite clos clos5 principle
ospf 183.1	kbps 24197.8	kbps 1126.0	kbps 151.4	kbps 1170.0	kbps
lowlat 186.1	kbps 24179.0	kbps 1126.0	kbps 150.1	kbps 1000.0	kbps

On	sequential	latency	tests,	it	can	also	be	observed	that	the	difference	isn't	that	noticeable.

sequential_ping bigtopo bipartite clos clos5 principle
ospf 0.3690 0.1220 0.1100 0.1740 0.1090
lowlat 0.2620 0.1700 0.1100 0.1420 0.1330

On	parallel	latency	tests,	where	this	algorithm	should	have	shown	a	great	difference,	the	difference	is	very
subtle.

parallel_ping bigtopo bipartite clos clos5 principle
ospf 7.4440 902.5610 1.6980 621.8470 79.3170
lowlat 4.3960 780.7750 0.7610 615.6790 65.0350

One-time	results

Sometimes,	things	doesn't	work	in	a	consistent	manner.	Not	all	results	we	got	were	the	way	they’re	on	the	tables
above:

While	manually	testing	principle	topology	on	early	development	stages,	we	got	a	latency	around	600ms	on
OSPF	and	6ms	on	their	algorithm.	We	were	unable	to	reproduce	this	ever	again	and	even	suspect	this	was	the
result	of	some	sort	of	mistake.
There	was	a	quirck	on	bigtopo’s	latency	on	sequential	tests	under	the	row	lowlat	where	the	value	was
145.257ms,	which	makes	no	sense	why	after	a	4s	cooldown	after	the	last	bandwidth	test	it	would	be	a	sudden
latency.	Such	test	was	re-run	and	the	tables	were	generated	once	again.

Conclusion

The	article	claimed	some	ground-breaking	results,	which	we	were	unable	to	reproduce.	We	found	some
undocumented	odd	behaviours	with	our	reimplementation.	It	might	be	too	early	to	say	their	methodology	doesn't
work,	but	it	surely	needs	a	deeper	clarification	on	what	M1	and	M2	constants	really	does,	how	to	find	a	good	value,
and	more	semantically-precise	flow	diagrams	that	would	make	it	harder	to	reimplement	things	wrong.


