
Comparative performance evaluation of Low Delay Routing on
emulated environment

Ádler Oliveira Silva Neves
adler.neves@aluno.ufes.br

Abstract

On a computer network, packets hop from network
element to network element as a way to propagate
a message that is expected to reach at its desti-
nation. How the network is doing this, however,
is constantly changing, as Software Defined Net-
works brought programmability to the switches
that forward packets. With some web services get-
ting billed by the millisecond, the load speed influ-
encing both user experience and battery usage on
mobile devices, latency became crucial. There’s a
routing algorithm by Gvozdiev et al. (2018) which
has promising but untested results, which may be
subject to unknown limitations. Here we show
that Low Delay Routing doesn’t handle extreme
cases of overload well. We found that when all
routes are congested, Low Delay Routing priori-
tize bandwidth over both latency and jitter. Our
results demonstrate that such routing algorithm
achieves low latency as a side-effect of maximizing
bandwidth, which isn’t guaranteed happen on all
cases. These cases in which low latency was still
achieved were with CLOS and B-Cube topologies.
We anticipate that the major contribution of our
article to be the framework used to compare more
algorithms on more topologies.

1 Introduction

On a world with web services billed by the mil-
lisecond, such as AWS Lambda[2], time is money.
Accessing a remote database from such environ-
ment means that the time spent waiting the con-
nection to establish is money lost. On the web,
such delay in the response from the server side
increases power consumption on mobile devices[3]
and decreases user experience[7]. Therefore, re-
ducing such latency is crucial and would bring
clear benefits.

Gvozdiev et al. proposes Low Delay Routing[6]
(LDR) as a solution for this problem, which is
a network routing algorithm that got impressive
results on the metrics that reflect its purpose. De-
spite its attractive results on latency, there’s no in-
depth evaluation of bandwidth and jitter. Storage
and processing components usually requires that
the owner chooses up to two attributes from high
speed, high capacity and low cost, and, extending
such dilemma to the network area, LDR had to
give up somewhere. But where? Are there other
limits which were not mentioned?

2 Materials and Methods

To answer that question, we set up a testing envi-
ronment with Mininet, Ryu and some own code on
a PC equipped with an i7 4790 (4 cores, 8 threads,
4GHz) and 16GB RAM DDR3@1600MHz, run-
ning Arch Linux. “Mininet is a system for rapidly
prototyping large networks on the constrained re-
sources of a single laptop”[8, p. 1], which was used
to create the emulated network and run commands
on the hosts it created. “Ryu is a component-
based software defined networking framework”[5],
which was used to define the behavior that the
switches would have using OpenFlow. Our own
code[10] is a collection of Python scripts and a
Makefile, including our partial re-implementations
of Gvozdiev et al.’s algorithm as a Ryu controller,
which were responsible for routing, monitoring, vi-
sualization, automatic testing and both table and
chart generation. These tools generated the data
that will be discussed on section 3, but, first, we
will explain more on how our tool set does what
it does on the next subsections.

1

mailto:adler.neves@aluno.ufes.br

2

2.1 Representing the topologies

The topologies are stored as JSON files. Such file
contains an array that contains 3 arrays. The first
array is a list of strings that represents the list of
hosts. The second array is a list of strings that
represents the list of switches. The last array is
a list of arrays that represents the list of links.
Every array that represents a link contain an two
strings that represents either a host or a switch,
and the third element is a number that represents
the maximum bandwidth of such link. Then, it
comes the time to present the topologies.

2.2 The topologies

We tested 9 topologies. Switches (starts with “s”,
as in “s3”) were represented by blue circles. Hosts
(starts with “h”, as in “h7”) were represented by
green circles. When there is no indication of speed
on the edge, the speed is 1 mbps. The topologies
are:

Triangle: This topology (figure 1) is a triangle
that has a longer and slower path that only
becomes a viable path when the shorter and
faster is congested.

100.0 mbps

100.0 mbps

100.0 mbps

100.0 mbps

0.8 mbps

1.0 mbps

0.8 mbps

h1

h2

h3

h4

s1
s2

s3

Figure 1: “Triangle” topology

Fat tree: Essentially, a complete bipartite graph
k3,8 where every pair of 2 switches of the
group with 8 nodes make another k2,2 graph
where the new switches which are more dis-
tant from the 3 ones from the core gets 2
hosts connected to each one. This topology
(figure 2) is equivalent to Pries et al.’s[11]
one.

h1

h2

h3

h4

h5
h6h7 h8

h9

h10

h11

h12

h13 h14h15
h16

s4
s5

s6

s7
s8s9

s10s11

s12
s13

s14

s15
s16s17

s18s19

s1s2s3

Figure 2: “Fat tree” topology

3-layered CLOS: A 3-stage CLOS fabric as de-
fined by Al-shawi[1], which has 3 switches
acting as spine and 8 as access leaves, with
2 hosts per access leaf. It can also be seen as
an k3,8 (as in Fat tree, but without that k2,2
process) with 2 nodes on every one of those
8 nodes, as expressed on figure 3.

h1

h2

h3

h4

h5

h6

h7

h8

h9
h10

h11 h12

h13h14
h15

h16

s1

s2

s3

s4

s5
s6

s7
s8

s9s10s11

Figure 3: “3-layered CLOS” topology

Bipartite: The same as the previous one (3-
layered CLOS), but with an extra switch
connecting all 3 spine switches, as expressed
on figure 4.

h1

h2

h3

h4

h5

h6

h7 h8

h9

h10

h11

h12
h13 h14

h15

h16

s1
s2

s3
s4

s5

s6
s7

s8

s9s10
s11

s12

Figure 4: “Bipartite” topology

Binary tree: A full binary tree with depth = 5
where the childless nodes are hosts and the
other ones are switches, as seen in figure 5.

3

h1

h2

h3 h4

h5 h6

h7

h8

h9 h10

h11

h12

h13

h14

h15 h16

s1
s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13 s14

s15

Figure 5: “Binary tree” topology

5-layered CLOS: A 5-stage CLOS fabric as de-
fined by Al-shawi[1], which has 2 rows of 4
access leaves each, 3 rows of 2 spine switches
each, and 2 hosts on each access leaf, as seen
in figure 6.

h1
h2

h3
h4

h5

h6

h7

h8

h9
h10

h11
h12

h13

h14

h15

h16

s1

s2

s3

s4

s5
s6s7

s8
s9
s10

s11

s12

s13

s14

Figure 6: “5-layered CLOS” topology

Grid: This topology (figure 7) aims to represent
a mesh of squares, which is a trivial solution
for physically interconnecting columns rows
and rows full of servers.

h1
h2 h3

h4

h5
h6 h7

h8

h9
h10 h11

h12

h13
h14 h15

h16

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

Figure 7: “Grid” topology

DCell: This topology is the same as the one pre-
sented in Pries et al.’s work [11] and repli-
cated on figure 8, however Mininet hosts
don’t forward packets to other hosts by de-
fault and don’t obey OpenFlow rules, so a
change was needed.

h1

h2
h3

h4

h5

h6 h7

h8

h9
h10

h11

h12

h13h14

h15

h16

h17
h18

h19 h20 s1
s2

s3
s4

s5

Figure 8: “DCell” topology

After such change, every host has become
a switch with a host connected to it, and
all connections the host had, the switch gets
them all, as seen in figure 9.

h1

h2

h3

h4

h5

h6
h7

h8

h9h10

h11

h12

h13
h14

h15

h16

h17h18

h19
h20

s1
s2

s3
s4

s5

s6
s7

s8 s9

s10

s11 s12s13

s14

s15

s16 s17s18

s19

s20

s21

s22s23

s24 s25

Figure 9: “DCell” topology with extra switches

BCube: This topology is the same as the one pre-
sented in Pries et al.’s work [11] and repli-
cated on figure 10, however the same prob-
lem as the one present on DCell repeats.

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16

s5

s6

s7

s8
s1

s2

s3

s4

Figure 10: “BCube” topology

The same solution as applied on DCell also
repeats here, as seen in figure 11.

4

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16
s5

s6

s7

s8

s9

s10

s11

s12

s13

s14s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s1

s2

s3

s4

Figure 11: “BCube” topology with extra switches

With these 9 topologies defined, we chose to run
30 tests on them. However, there was no de-
fined method of testing those topologies in a way
that the numbers would reflect routing algorithms’
ability to maintain low latency, low jitter and high
bandwidth even when congestion is unavoidable.

2.3 Testing the topologies

Suppose we have an array of hosts, such as:

h1 h2 h3 h4 h5 h6 h7 h8 h9

An easy way to get pairs to test is split such array
in path, discarding the extra member:

hx h1 h2 h3 h4 h5
hx h6 h7 h8 h9 hx

That done, h1 and h6 would be latency tests and
all other 3 pairs are bandwidth tests. This would
be a great simple solution if h1 and h6 could be
more distant to each other on Grid topology (fig-
ure 7). Keeping this as is would bring a latency
test which result would reflect more about the ca-
pacity of the routing algorithm on making a better
use of the network. A host which is consistently
the most distant is the last one. As h1 and h6
were, on some topologies, closer to each other than
to h9 (the last element). Therefore, it was chosen
to reverse the second part. The final combination
would be:

h1 h2 h3 h4
h9 h8 h7 h6

That said, h1 and h9 are latency tests and all other
3 pairs are bandwidth tests.

Our testing process starts the topology, wait the
controller be ready, run the tests, write the re-
sults and finishes itself. All tests are run sequen-
tially and then concurrently, in order to measure
all links in its idle and overloaded states. Between
every test there’s a wait time that is exactly 2
times the monitoring interval, which is the mini-
mal interval to let the routing algorithm see the
entire network as unused. Latency is avg from
ping command; jitter, mdev from the same com-
mand; bandwidth, the bottom line of the iperf
command running as client, using TCP. The bulk
testing script we have also write controller’s con-
figuration to change the routing algorithm being
tested, starts the controller, run a giver number of
tests (we chose 30) for each pair routing algorithm,
ends the execution of the controller and destroys
the topology and, after all tests were ran, store all
results in a single file.

Such file that contains the results of all tests was
later used to generate the tables, box and whisker
plots and a ternary plot that will be presented on
section 3.

2.4 The OpenFlow controller

Our OpenFlow controller was written using Ryu
as framework. To avoid going over the task of dis-
covering the topology and recovering from topol-
ogy changes at run-time, it was chosen to let the
topology be static and pass the topology (sec-
tion 2.1) as a command-line argument because this
wouldn’t impact the tests. Translating Gvozdiev
et al.’s Points of Presence to Mininet’s hosts, it
was possible to map the concepts the article men-
tions into the framework we have. It was tested
5 routing algorithms: Spanning Tree (Dijkstra-
based), 2 implementations of LDR, ECMP (equal-
cost multiple path) and a reimplementation of
MinMax from Gvozdiev et al.’s textual descrip-
tion.

Gvozdiev et al.’s LDR algorithm is inherently
multi-path, using different paths as some sort of
link aggregation, which means that packets may
not necessarily arrive at the order it was sent.
So, keeping this nature, the linear program from
Gvozdiev et al.’s figure 12 [6, p. 96] was re-
implemented using the library PuLP to solve such
linear program, using link load obtained from
monitoring and latency on link derives from; fig-
ure 13’s [6, p. 96] conditional path set exten-

5

sion was adapted to always give the linear pro-
gram the paths the pass a filter that only allow
a path stretch up to 1.4 [6, p. 89] after applied
Gvozdiev et al.’s algorithm 1 [6, p. 94]. This can
be summed up as the flow: Monitoring → Algo-
rithm 1→ APA-based filter doing the role of figure
13 → Figure 12 → Flow table. The steps about
the “iteration to assess statistical multiplexing” as
expressed on Gvozdiev et al.’s figure 14 [6, p. 96]
were simply ignored because we considered it to
be very abstract with many possible interpreta-
tions and, as consequence, hard to re-implement
without re-implementing something the authors
did it in a very different manner and achieving
completely different results. We called this “LDR
(multi-path)” on charts.

However, not all applications handles packets ar-
riving out of their order well. So, instead of intro-
ducing a packet queue (increasing delay and pos-
sibly introducing buffer bloat as a concern), we
could also change the routing algorithm to choose
only one path and change later, as needed. Instead
of solving a linear program, Gvozdiev et al.’s fig-
ure 12 [6, p. 96] could be interpreted as a cost
function, where we should pick the path on the
aggregate which is the minimum. Such cost func-
tion would be C(p) = dp+ dpM1

Sa
+M2Omax+

∑
l Ol,

which is the per-aggregate part of the sum which
is part of the linear program from Gvozdiev et al.’s
figure 12 with the restriction of choosing only one
path (xap = 1). Then, Gvozdiev et al.’s figure
13 [6, p. 96] can be applied by interpreting the
path set extension as a path change, and the de-
cision if there’s any link overloaded as a decision
if there’s a change that figure 12 suggested that
would make the routing better (less congested).
As there is only one path being used by aggregate,
there is no statistical multiplexing to be assessed
on Gvozdiev et al.’s figure 14 [6, p. 96], so it was
ignored. We called this “LDR (single-path)” on
charts.

Gvozdiev et al.’s figure 12 [6, p. 96] uses 2 con-
stants: M1 and M2. The only hint to give M1 a
value was “to ensure this is only a tie-break, M1
is a very small constant”[6, p. 96]. As a wild
guess over that vague description and seeing its
use on Gvozdiev et al.’s figure 12 [6, p. 96] as
being multiplied by a fraction that ranges from 0
to 1, we started Mininet with its default topol-
ogy and ran a ping between the two hosts; as the
value was 0.6ms, then we set M1 to be 0.0006.
M2, on its time, acts over the maximum overload

of a given path “[...] subject to the constraint that
they avoid congestion; M2 is large to ensure this
term dominates”[6, p. 95]. As another wild guess,
we set that value to be 120; with particular rea-
son and with no clue if such value being too large
could have negative side-effects, but with the sus-
picion that M2 should not be a constant, but a
metric of such node in a graph that represents the
network, however we didn’t investigate that possi-
bility on this article. That said, M1 and M2 lacks
better explanation on what it does and how could
we calculate them.

Our Dijkstra-based Spanning Tree algorithm takes
the advantage of knowing the entire topology
(which is also static) and calculates the shortest
path for each pair of hosts using Dijskstra. The
advantage of doing Spanning Tree this way and
not through OSPF is that we will not be send-
ing the topology over the links periodically, being
able to keep the topology completely idle while
no host is sending or receiving packets. No rout-
ing difference is expected to exist between this ap-
proach and OSPF. Even that it’s not OSPF on a
strict sense, we called this “OSPF (single-path)”
on charts.

Our ECMP implementation lists all paths between
two hosts, discards the longer paths which have
conflicting flow directions over the same link as
shorter ones (or else we would have packet loss)
and creates a static link aggregation that uses
all remaining flows to deliver packages. Similarly
as “LDR (multi-path)”, this routing algorithm is
expected to have issues with applications which
doesn’t handle packets arriving out of their or-
der well. We called this “ECMP (multi-path)” on
charts.

Gvozdiev et al. describes “[...] a pure MinMax
approach [as one that] optimizes traffic place-
ment so as to minimize the maximum link uti-
lization[...]”[6, p. 96]. Therefore, we wrote an al-
gorithm that takes every host pair from ℘(H) \
{(h, h)∀h ∈ H} (where H is a set of hosts), simu-
late all possible paths for that source-destination
pair, pick the path that has the minimum maxi-
mum path load and update the current network
model to have that traffic moved to that chosen
path; after all source-destination pairs have been
processed, our network model will hold the fu-
ture network topology. We called this “MinMax
(single-path)” on charts.

With all topologies, algorithms and testing

6

methodology defined, we set our topology update
cycle to 1 second and ran our tests over some days
and we can, now, proceed to the results.

3 Results

After all tests ran, we got the 20 tables, 170 box
plots and 10 ternary scatter plots. Due to space re-
strictions, lack of relevance of some collected data
and limited ability to analyze so many facets from
a data matrix with 4 dimensions (routing algo-
rithm, topology, metric and sample), we will only
display here 7 tables, 33 box plots and a single
ternary plot.

The tables 1 to 4 have a line and a column named
“All”, which represents the union of the data from
all neighbor lines and columns, respectively. Such
union was, later, used to quickly represent all
topologies on a single plot. This can be observed
on the box plot figures 12 to 14, which were gen-
erated using matplotlib[4], displaying the median
as a green line, the mean as a blue diamond and
the outliers as red “×”s. Figure 15 was also plot-
ted using such from “All” column, combining in-
dividual values of concurrent latencies, jitter and
bandwidth, plotted using python-ternary[9].

Spotting out the outliers on the tables 1 to 3 is
difficult, the values from the columns were sub-
tracted from the column “All”. Therefore, the
tables 5 to 7 contain the deviation of such al-
gorithm’s average on a given topology from all
topologies’ algorithm average. On the table 5,
we can see that on “B-Cube” and on “3-layered
CLOS” the values of both “LDR (single-path)”
and “MinMax (single-path)” on the table are
negative while all others are positive, “5-layered
CLOS”, “B-Cube” and “Triangle” are positive on
“LDR (multi-path)” while all others are negative,
“Binary Tree”, “B-Cube” and “3-layered CLOS”
are positive on “ECMP (multi-path)” while all
others are negative; the value “ECMP (multi-
path)” × “5-layered CLOS” is the only 3-digit
number (after truncation) of the entire table. On
the table 6, we can see that on the line “Binary
Tree”, “B-Cube” and “D-Cell” the values of both
“LDR (single-path)” and “MinMax (single-path)”
on the table are negative while all others are pos-
itive; on “LDR (multi-path)”, “5-layered CLOS”,
“B-Cube” and “Triangle” are positive while other
values are negative; on “ECMP (multi-path)”,

“Binary Tree”, “B-Cube”, “D-Cell” and “3-layered
CLOS” are positive while other values are nega-
tive; again, “ECMP (multi-path)” × “5-layered
CLOS” is the most significative value of the table.
On table 7, we can see that on the line “B-Cube”
and “Triangle” the values of both “LDR (single-
path)” and “MinMax (single-path)” on the table
are positive while all others are negative; on “LDR
(multi-path)”, “Binary Tree”, “5-layered CLOS”
and “B-Cube” are negative while other values are
positive; on “ECMP (multi-path)”, “Binary Tree”,
“B-Cube”, “D-Cell” and “Triangle” are negative
while other values are positive; “ECMP (multi-
path)” × “5-layered CLOS” isn’t the most signi-
ficative value of the table, but “Bipartite”× “LDR
(multi-path)”. Therefore, we also included the box
plot figures 16 to 30, which contains boxes and
whiskers blots previously mentioned (which are re-
dundant on table 8 for readability).

Table 8: Outliers identified on tables 5 to 7 which
are represented on figures 16 to 30, highlighting
line with different values

Latency Jitter Bandwidth
Binary Tree Binary Tree Binary Tree
B-Cube B-Cube B-Cube

3-layered CLOS D-Cell D-Cell
5-layered CLOS 5-layered CLOS 5-layered CLOS

Triangle Triangle Triangle

The figures 31 to 45 are slices from the aforemen-
tioned 4-dimensional matrix, by algorithm and
metric, containing the topologies on the horizon-
tal axis, the values of each measurement on the
vertical axis, grouped as a box and whiskers plot,
also generated using matplotlib[4]. Such view will
be relevant on discussion section.

Something we didn’t mention on section 2.2 is that
our 5-layered CLOS (figure 6) originally had 3
switches on each spine row. The problem with
that is that there are more paths in that topol-
ogy than our computer had memory to represent
them. To solve that, we had to reduce it to 2
switches on each spine row. This may suggest
some limitations on routing algorithm applicabil-
ity.

Something we noticed during the tests was that
routing algorithm response time got slower as the
topology had more paths available. Such im-

7

Table 1: Average of all concurrent latency tests

Latency (concurrent) OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path) All
Binary Tree 343.69 ms 344.13 ms 344.33 ms 343.25 ms 344.24 ms 343.93 ms
5-layered CLOS 343.65 ms 342.78 ms 343.36 ms 306.31 ms 146.70 ms 296.56 ms
B-Cube 11.66 ms 17.53 ms 12.68 ms 67.84 ms 33.48 ms 28.64 ms
Fat Tree 156.51 ms 156.23 ms 156.90 ms 68.09 ms 53.67 ms 118.28 ms
Grid 193.80 ms 180.29 ms 187.01 ms 153.61 ms 116.54 ms 166.25 ms
D-Cell 107.61 ms 106.78 ms 107.33 ms 89.34 ms 90.61 ms 100.34 ms
Bipartite 19.91 ms 19.93 ms 20.39 ms 9.31 ms 8.33 ms 15.58 ms
3-layered CLOS 20.39 ms 19.86 ms 19.78 ms 13.58 ms 45.66 ms 23.85 ms
Triangle 76.26 ms 78.36 ms 75.98 ms 76.97 ms 23.13 ms 66.14 ms
All 141.50 ms 140.66 ms 140.86 ms 125.37 ms 95.82 ms 128.84 ms

Lower is better

Table 2: Average of all concurrent jitter tests

Jitter (concurrent) OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path) All
Binary Tree 106.37 ms 106.26 ms 106.30 ms 106.27 ms 106.51 ms 106.34 ms
5-layered CLOS 107.63 ms 106.66 ms 107.42 ms 92.26 ms 37.76 ms 90.35 ms
B-Cube 5.36 ms 8.07 ms 5.66 ms 25.86 ms 13.72 ms 11.73 ms
Fat Tree 38.86 ms 38.85 ms 38.77 ms 19.95 ms 17.10 ms 30.71 ms
Grid 49.68 ms 47.61 ms 48.24 ms 39.11 ms 31.28 ms 43.19 ms
D-Cell 23.05 ms 23.15 ms 23.17 ms 18.26 ms 28.71 ms 23.27 ms
Bipartite 12.32 ms 12.29 ms 12.37 ms 6.04 ms 4.34 ms 9.47 ms
3-layered CLOS 12.13 ms 12.35 ms 12.29 ms 9.27 ms 15.23 ms 12.25 ms
Triangle 40.77 ms 44.84 ms 39.90 ms 40.61 ms 21.98 ms 37.62 ms
All 44.02 ms 44.45 ms 43.79 ms 39.74 ms 30.74 ms 40.55 ms

Lower is better

Table 3: Average of all concurrent bandwidth tests

Bandwidth (concurrent) OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path) All
Binary Tree 210.5 kbps 210.1 kbps 209.8 kbps 209.6 kbps 209.4 kbps 209.9 kbps
5-layered CLOS 216.2 kbps 214.0 kbps 214.5 kbps 235.6 kbps 443.7 kbps 264.8 kbps
B-Cube 987.6 kbps 975.8 kbps 961.7 kbps 601.3 kbps 600.3 kbps 825.4 kbps
Fat Tree 378.3 kbps 378.2 kbps 379.5 kbps 535.0 kbps 591.3 kbps 452.5 kbps
Grid 474.3 kbps 446.7 kbps 462.1 kbps 481.7 kbps 518.5 kbps 476.7 kbps
D-Cell 562.5 kbps 563.0 kbps 561.9 kbps 663.6 kbps 542.4 kbps 578.7 kbps
Bipartite 706.7 kbps 706.5 kbps 706.9 kbps 1033.9 kbps 806.4 kbps 792.1 kbps
3-layered CLOS 706.8 kbps 706.3 kbps 706.7 kbps 981.9 kbps 857.9 kbps 791.9 kbps
Triangle 1168.0 kbps 1168.0 kbps 1170.0 kbps 1170.0 kbps 1102.9 kbps 1155.8 kbps
All 601.2 kbps 596.5 kbps 597.0 kbps 657.0 kbps 630.3 kbps 616.4 kbps

Higher is better

Table 4: Average routing algorithm’s first response time on controller initialization

Routing response time OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path) All
Binary Tree 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
5-layered CLOS 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
B-Cube 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
Fat Tree 20.9 s 19.7 s 21.2 s 8.8 s 14.9 s 17.1 s
Grid 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
D-Cell 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
Bipartite 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
3-layered CLOS 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
Triangle 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s
All 2.3 s 2.2 s 2.4 s 1.0 s 1.7 s 1.9 s

Lower is better

8

Table 5: Deviation from average of all concurrent latency tests

Latency (concurrent) OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path)
Binary Tree -0.24 ms 0.20 ms 0.40 ms -0.68 ms 0.31 ms
5-layered CLOS 47.09 ms 46.22 ms 46.80 ms 9.75 ms -149.86 ms
B-Cube -16.98 ms -11.11 ms -15.96 ms 39.20 ms 4.84 ms
Fat Tree 38.23 ms 37.95 ms 38.62 ms -50.19 ms -64.61 ms
Grid 27.55 ms 14.04 ms 20.76 ms -12.64 ms -49.72 ms
D-Cell 7.27 ms 6.45 ms 7.00 ms -11.00 ms -9.72 ms
Bipartite 4.34 ms 4.36 ms 4.82 ms -6.27 ms -7.24 ms
3-layered CLOS -3.47 ms -4.00 ms -4.07 ms -10.27 ms 21.81 ms
Triangle 10.12 ms 12.22 ms 9.84 ms 10.83 ms -43.01 ms
All 12.66 ms 11.81 ms 12.02 ms -3.47 ms -33.02 ms

Lower is better

Table 6: Deviation from average of all concurrent jitter tests

Jitter (concurrent) OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path)
Binary Tree 0.03 ms -0.09 ms -0.04 ms -0.07 ms 0.17 ms
5-layered CLOS 17.29 ms 16.31 ms 17.08 ms 1.91 ms -52.58 ms
B-Cube -6.38 ms -3.67 ms -6.07 ms 14.13 ms 1.99 ms
Fat Tree 8.15 ms 8.14 ms 8.07 ms -10.76 ms -13.60 ms
Grid 6.49 ms 4.43 ms 5.06 ms -4.07 ms -11.90 ms
D-Cell -0.22 ms -0.12 ms -0.10 ms -5.01 ms 5.44 ms
Bipartite 2.85 ms 2.82 ms 2.89 ms -3.44 ms -5.13 ms
3-layered CLOS -0.12 ms 0.09 ms 0.04 ms -2.98 ms 2.98 ms
Triangle 3.15 ms 7.22 ms 2.28 ms 2.99 ms -15.64 ms
All 3.47 ms 3.90 ms 3.24 ms -0.81 ms -9.81 ms

Lower is better

Table 7: Deviation from average of all concurrent bandwidth tests

Bandwidth (concurrent) OSPF (single-path) LDR (single-path) MinMax (single-path) LDR (multi-path) ECMP (multi-path)
Binary Tree 0.6 kbps 0.2 kbps -0.1 kbps -0.2 kbps -0.4 kbps
5-layered CLOS -48.6 kbps -50.8 kbps -50.3 kbps -29.2 kbps 178.9 kbps
B-Cube 162.2 kbps 150.5 kbps 136.4 kbps -224.0 kbps -225.0 kbps
Fat Tree -74.2 kbps -74.3 kbps -72.9 kbps 82.6 kbps 138.8 kbps
Grid -2.3 kbps -30.0 kbps -14.6 kbps 5.1 kbps 41.8 kbps
D-Cell -16.2 kbps -15.7 kbps -16.8 kbps 84.9 kbps -36.2 kbps
Bipartite -85.4 kbps -85.6 kbps -85.2 kbps 241.8 kbps 14.3 kbps
3-layered CLOS -85.1 kbps -85.6 kbps -85.2 kbps 189.9 kbps 66.0 kbps
Triangle 12.2 kbps 12.2 kbps 14.2 kbps 14.2 kbps -52.9 kbps
All -15.2 kbps -19.9 kbps -19.4 kbps 40.6 kbps 13.9 kbps

Higher is better

9

pact was perceived by watching the topologies
being tested on our real-time visualizer, which
took more time than 1 second to update the file
that the visualizer refreshed 10 times per second.
Such observation suggested that “MinMax (single-
path)” is slower than “LDR (single-path)”, which
is slower than “LDR (multi-path)”, which is slower
than all the others, which were imperceptibly fast.
This may be important for some applications with
already-deployed topologies.

It’s worth highlighting that every source value on
table 4 was measured with 2 second intervals be-
tween every observation of the controller state.
For example, if a routing algorithm took 4.1 sec-
onds to get ready, the test would have registered it
took 6 seconds. With some variability on the mea-
surements over the 30 samples, the average should
be able to smooth those minor imperfections.

After mentioning all the data we obtained and be-
haviors we observed, we have content to discuss on
section 4.

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

50

100

150

200

250

300

350

m
ilis

se
co

nd
s

Latency (concurrent) on All

Figure 12: Box and whisker plot of all latency
samples from concurrent tests

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

20

40

60

80

100

120

m
ilis

se
co

nd
s

Jitter (concurrent) on All

Figure 13: Box and whisker plot of all jitter sam-
ples from concurrent tests

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

200

400

600

800

1000

1200

ki
lo

bi
ts

 p
er

 se
co

nd
Bandwidth (concurrent) on All

Figure 14: Box and whisker plot of all bandwidth
samples from concurrent tests

Low latency

Lo
w

jitt
er

Low bandwidth

High latency

High jitterHigh bandwidth

OSPF (single-path)
LDR (single-path)
MinMax (single-path)
LDR (multi-path)
ECMP (multi-path)

Figure 15: Ternary scatter plot of the union of all
samples from all topologies

10

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

340

342

344

346

m
ilis

se
co

nd
s

Latency (concurrent) on Binary Tree

Figure 16: Box and whisker plot of latency sam-
ples from concurrent tests on “Binary Tree” topol-
ogy

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

50

100

150

200

m
ilis

se
co

nd
s

Latency (concurrent) on B-Cube

Figure 17: Box and whisker plot of latency sam-
ples from concurrent tests on “B-Cube” topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

20

40

60

80

100

120

140

m
ilis

se
co

nd
s

Latency (concurrent) on 3-layered CLOS

Figure 18: Box and whisker plot of latency sam-
ples from concurrent tests on “3-layered CLOS”
topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

50

100

150

200

250

300

350

m
ilis

se
co

nd
s

Latency (concurrent) on 5-layered CLOS

Figure 19: Box and whisker plot of latency sam-
ples from concurrent tests on “5-layered CLOS”
topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

20

40

60

80

100

m
ilis

se
co

nd
s

Latency (concurrent) on Triangle

Figure 20: Box and whisker plot of latency sam-
ples from concurrent tests on “Triangle” topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)
102

104

106

108

110

m
ilis

se
co

nd
s

Jitter (concurrent) on Binary Tree

Figure 21: Box and whisker plot of jitter samples
from concurrent tests on “Binary Tree” topology

11

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

10

20

30

40

50

60
m

ilis
se

co
nd

s

Jitter (concurrent) on B-Cube

Figure 22: Box and whisker plot of jitter samples
from concurrent tests on “B-Cube” topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)
0

10

20

30

40

50

60

70

80

m
ilis

se
co

nd
s

Jitter (concurrent) on D-Cell

Figure 23: Box and whisker plot of jitter samples
from concurrent tests on “D-Cell” topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)
0

20

40

60

80

100

120

m
ilis

se
co

nd
s

Jitter (concurrent) on 5-layered CLOS

Figure 24: Box and whisker plot of jitter samples
from concurrent tests on “5-layered CLOS” topol-
ogy

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

0

20

40

60

80

m
ilis

se
co

nd
s

Jitter (concurrent) on Triangle

Figure 25: Box and whisker plot of jitter samples
from concurrent tests on “Triangle” topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)
202

204

206

208

210

212

214

ki
lo

bi
ts

 p
er

 se
co

nd
Bandwidth (concurrent) on Binary Tree

Figure 26: Box and whisker plot of bandwidth
samples from concurrent tests on “Binary Tree”
topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)
400

500

600

700

800

900

1000

1100

1200

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) on B-Cube

Figure 27: Box and whisker plot of bandwidth
samples from concurrent tests on “B-Cube” topol-
ogy

12

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

500

550

600

650

700

750
ki

lo
bi

ts
 p

er
 se

co
nd

Bandwidth (concurrent) on D-Cell

Figure 28: Box and whisker plot of bandwidth
samples from concurrent tests on “D-Cell” topol-
ogy

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)

200

250

300

350

400

450

500

550

600

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) on 5-layered CLOS

Figure 29: Box and whisker plot of band-
width samples from concurrent tests on “5-layered
CLOS” topology

OSPF (SP) LDR (SP) MinMax (SP) LDR (MP) ECMP (MP)
900

950

1000

1050

1100

1150

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) on Triangle

Figure 30: Box and whisker plot of bandwidth
samples from concurrent tests on “Triangle” topol-
ogy

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

50

100

150

200

250

300

350

m
ilis

se
co

nd
s

Latency (concurrent) using OSPF (single-path)

Figure 31: Box and whisker plot of latency sam-
ples from concurrent tests on “OSPF (single-
path)” algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

20

40

60

80

100
m

ilis
se

co
nd

s

Jitter (concurrent) using OSPF (single-path)

Figure 32: Box and whisker plot of jitter samples
from concurrent tests on “OSPF (single-path)” al-
gorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

200

400

600

800

1000

1200

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) using OSPF (single-path)

Figure 33: Box and whisker plot of bandwidth
samples from concurrent tests on “OSPF (single-
path)” algorithm

13

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

50

100

150

200

250

300

350
m

ilis
se

co
nd

s

Latency (concurrent) using LDR (single-path)

Figure 34: Box and whisker plot of latency sam-
ples from concurrent tests on “LDR (single-path)”
algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

20

40

60

80

100

m
ilis

se
co

nd
s

Jitter (concurrent) using LDR (single-path)

Figure 35: Box and whisker plot of jitter samples
from concurrent tests on “LDR (single-path)” al-
gorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

200

400

600

800

1000

1200

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) using LDR (single-path)

Figure 36: Box and whisker plot of bandwidth
samples from concurrent tests on “LDR (single-
path)” algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

50

100

150

200

250

300

350

m
ilis

se
co

nd
s

Latency (concurrent) using MinMax (single-path)

Figure 37: Box and whisker plot of latency sam-
ples from concurrent tests on “MinMax (single-
path)” algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

20

40

60

80

100

m
ilis

se
co

nd
s

Jitter (concurrent) using MinMax (single-path)

Figure 38: Box and whisker plot of jitter samples
from concurrent tests on “MinMax (single-path)”
algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

200

400

600

800

1000

1200

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) using MinMax (single-path)

Figure 39: Box and whisker plot of band-
width samples from concurrent tests on “MinMax
(single-path)” algorithm

14

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

50

100

150

200

250

300

350
m

ilis
se

co
nd

s

Latency (concurrent) using LDR (multi-path)

Figure 40: Box and whisker plot of latency sam-
ples from concurrent tests on “LDR (multi-path)”
algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

20

40

60

80

100

120

m
ilis

se
co

nd
s

Jitter (concurrent) using LDR (multi-path)

Figure 41: Box and whisker plot of jitter samples
from concurrent tests on “LDR (multi-path)” al-
gorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

200

400

600

800

1000

1200

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) using LDR (multi-path)

Figure 42: Box and whisker plot of bandwidth
samples from concurrent tests on “LDR (multi-
path)” algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

50

100

150

200

250

300

350

m
ilis

se
co

nd
s

Latency (concurrent) using ECMP (multi-path)

Figure 43: Box and whisker plot of latency sam-
ples from concurrent tests on “ECMP (multi-
path)” algorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

0

20

40

60

80

100
m

ilis
se

co
nd

s

Jitter (concurrent) using ECMP (multi-path)

Figure 44: Box and whisker plot of jitter samples
from concurrent tests on “ECMP (multi-path)” al-
gorithm

Bin
Tre

e

CLO
S-5

B-Cub
e

Fat
 Tr

ee Grid
D-Cell

Bipa
rtit

e

CLO
S-3

Tri
an

gle

200

400

600

800

1000

1200

ki
lo

bi
ts

 p
er

 se
co

nd

Bandwidth (concurrent) using ECMP (multi-path)

Figure 45: Box and whisker plot of bandwidth
samples from concurrent tests on “ECMP (multi-
path)” algorithm

15

4 Discussion

Before we start, we should remember that all
paths from all topologies had 1mbps bandwidth,
with “Triangle” being the only exception, but it
had overcapacity. This is the ideal scenario for
the ECMP we implemented; not for LDR. This
suggests that another question very similar to
Gvozdiev et al.’s question “Does routing influence
topology?”[6, p. 99], but worded as “Does topol-
ogy influence routing?”. In no moment we ex-
pected LDR to be consistently faster, with lower
latency and lower jitter than ECMP; and that’s
the strategy behind the tests: what attributes it
gives up to become better at what else?

With S as the set of switches and H as the set of
hosts to be routed, |S| × |℘(H) \ {(h, h)∀h ∈ H}|
is the sum of the number of entries of every switch
of the network. This number of entries can be fea-
sible for testing few hosts on an emulated environ-
ment (our case). However, our implementation is
not suitable for production.

From the data we collected, we see that “LDR
(multi-path)” gained, on the average case, advan-
tage on bandwidth (figure 14), but lost perfor-
mance on latency and jitter (figures 12 and 13)
over other algorithms. Even that this is not true
for all cases, such as in figures 16, 18, 23, 29, this
is the opposite of what we were expecting. To un-
derstand why this happened, we need to remember
that Gvozdiev et al.’s proposed routing algorithm
tries, first, to eliminate congestion, then choose
the path with lower latency. Eliminating conges-
tion on one overloaded link by sharing its load with
multiple underused link sounds like an obvious so-
lution. The problem starts when you have more
demand than capacity. In such scenario, data
shows that this algorithm will attempt keep link
usage evenly balanced to keep bandwidth high,
even if this means increasing latency and jitter.
If this gets combined with an latency-dependent
application that generates more traffic when the
latency requirements aren’t met (like an hypothet-
ical video chat application that tries compensat-
ing a higher delay by increasing the frame rate),
a scenario for thrashing appears. Such behavior,
even if it happens under extremely rare and ab-
normal situations, will be more likely to happen
over the time, as technology advances and new
requirements are set, enabling DDoS1 attacks to

use even more bandwidth and new internet appli-
cations that make a more intense use of the avail-
able infrastructure. The upcoming 5G technology
(which have already arrived on few cities) enables
low-latency and near 1gbps mobile connections,
while some parts of the infrastructure are still from
4G period; if adding such routing algorithm in-
troduces the possibility of severe service degrada-
tion, it’s understandable why ISPs wouldn’t de-
ploy it in real world. Finally, this goes the will
expressed on the end of Gvozdiev et al.’s discus-
sion section: “We hope our work can be a first step
toward enabling the deployment of ISP topologies
that are better than today’s for the provision of
low-latency service [...]”[6, p. 100].

From the data we collected “LDR (single-path)”
exchanges, on the average case, a slightly higher
jitter for the average latency variability between
measurements to reduce, while keeping the band-
width nearly the same as “OSPF (single-path)”,
however . As for an overloaded network, it’s per-
forming as expected: changing routes to attempt
(in vain) to reduce latency. However, it didn’t
perform completely as expected. As soon as mon-
itoring started inserting monitoring data, response
time increased. On topologies with high path di-
versity, it meant path changing stopped right after
the first monitoring. As the same thing happened
to “MinMax (single-path)”, it suffered from the
same problems, but reducing latency while keep-
ing jitter and bandwidth stable, but not as re-
duced as in “LDR (single-path)”. As the rout-
ing decisions are time-dependent, this diminished
their performance; specially because each test in-
dividual test took 10 seconds.

The figure 15 shows a dispersion of all collected
data. How the data organizes itself on that
ternary plane shows how a incomprehensible mess
looking at everything at once is. Therefore the av-
erage used previously may be prone to oversimpli-
fication. A way to don’t oversimplificate, in this
case, is looking at what topologies each routing
algorithm works the best and ignoring the cases
where the topology doesn’t work well with the al-
gorithm.

Figures 31 to 45 brings, then, the required perfor-
mance information to assist a data center architect
to decide which topology and routing algorithm to
deploy; “Principle” should be ignored, as it was in-
tended to be a proof of concept; “D-Cell” should

1Distributed Denial of Service

16

also be ignored, as having 5 cells with 4 hosts each
and dividing the hosts in half for testing gave that
topology the advantage of having 2 pairs doing
bandwidth tests in which both client and server
were inside the same cell. Looking at “OSPF
(single-path)” (figures 31, 32 and 33), “B-Cube”
brings high bandwidth at the lowest latency and
jitter. Looking at “LDR (single-path)” (figures 34,
35 and 36) and “MinMax (single-path)” (figures
37, 38 and 39), “B-Cube” brings high bandwidth
at the lowest latency and jitter, but these last two
suffer from variability in a way that it can perform
worse than other topologies; if having a stable la-
tency and/or jitter is a requirement that makes a
loss on bandwidth around 27% tolerable, “Bipar-
tite” and “CLOS-3” are nearly-equivalent options.
Looking at “LDR (multiple-path)” (figures 40, 41
and 42), “Bipartite” brings the lowest latency and
jitter with the highest bandwidth. Looking at
“ECMP (multiple-path)” (figures 43, 44 and 45),
“Bipartite” brings the lowest latency and jitter,
but a slightly higher bandwidth is found with
“CLOS-3”. As this didn’t take into account ca-
bling costs, generated heat by equipment, cooling,
etc, other factors may influence the final choice,
but great benefits are expected if the routing al-
gorithm is tuned for the network it’ll route and
vice-versa.

Finally, we can answer the questions made on
the introduction of the article. The compromises
were made on the case when there is no alterna-
tive path available and all paths are overloaded,
but that may not be the case if the topology is
similar to a “3-layered CLOS”. Such compromise,
when present, becomes a limitation that makes
it doesn’t handle full-network overload well. We
hope that this article left, at least, an useful com-
parative testing code artifact for routing algo-
rithms, which can be reused on future comparative
works.

5 Acknowledgments

We thank CAPES for the financial support given
during this research, Magnos Martinello for point-
ing us towards CLOS topologies, Maxwell Mon-
teiro for pointing us towards ECMP, BCube and
DCell, Marin Vlastelica Pogančić for the compre-
hensible tutorial on HackerNoon on how to use
PuLP and Wildan Maulana Syahidillah for the ex-
planatory multi-path routing tutorial using Ryu.

References
[1] Marwan Al-shawi. Clos (Spine & Leaf)

Architecture – Overview. [Online; accessed
08-Jul-2019]. Nov. 2018. url: http : / /
netdesignarena.com/index.php/2018/
11/05/clos-spine-leaf-architecture-
overview/.

[2] Amazon. AWS Lambda pricing. [Online; ac-
cessed 05-Jul-2019]. 2019. url: https : / /
aws.amazon.com/lambda/pricing/.

[3] Duc Hoang Bui et al. “Rethinking Energy-
Performance Trade-Off in Mobile Web Page
Loading”. In: Proceedings of the 21st Annual
International Conference on Mobile Com-
puting and Networking. MobiCom ’15. Paris,
France: ACM, 2015, pp. 14–26. isbn: 978-
1-4503-3619-2. doi: 10 . 1145 / 2789168 .
2790103. url: http://doi.acm.org/10.
1145/2789168.2790103.

[4] Thomas A Caswell et al. matplotlib/mat-
plotlib: REL: v3.1.1. July 2019. doi: 10 .
5281/zenodo.3264781. url: https://doi.
org/10.5281/zenodo.3264781.

[5] Ryu SDN Framework Community. Ryu SDN
Framwork. [Online; accessed 05-Jul-2019].
2017. url: http://osrg.github.io/ryu/.

[6] Nikola Gvozdiev et al. “On Low-latency-
capable Topologies, and Their Impact on the
Design of Intra-domain Routing”. In: Pro-
ceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communi-
cation. SIGCOMM ’18. Budapest, Hungary:
ACM, 2018, pp. 88–102. isbn: 978-1-4503-
5567-4. doi: 10.1145/3230543.3230575.
url: http : / / doi . acm . org / 10 . 1145 /
3230543.3230575.

[7] Conor Kelton et al. “Improving User Per-
ceived Page Load Times Using Gaze”.
In: 14th USENIX Symposium on Net-
worked Systems Design and Implementa-
tion (NSDI 17). Boston, MA: USENIX As-
sociation, 2017, pp. 545–559. isbn: 978-1-
931971-37-9. url: https://www.usenix.
org / conference / nsdi17 / technical -
sessions/presentation/kelton.

[8] Bob Lantz, Brandon Heller, and Nick McK-
eown. “A Network in a Laptop: Rapid Pro-
totyping for Software-defined Networks”.
In: Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Net-
works. Hotnets-IX. Monterey, California:

http://netdesignarena.com/index.php/2018/11/05/clos-spine-leaf-architecture-overview/
http://netdesignarena.com/index.php/2018/11/05/clos-spine-leaf-architecture-overview/
http://netdesignarena.com/index.php/2018/11/05/clos-spine-leaf-architecture-overview/
http://netdesignarena.com/index.php/2018/11/05/clos-spine-leaf-architecture-overview/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://doi.org/10.1145/2789168.2790103
https://doi.org/10.1145/2789168.2790103
http://doi.acm.org/10.1145/2789168.2790103
http://doi.acm.org/10.1145/2789168.2790103
https://doi.org/10.5281/zenodo.3264781
https://doi.org/10.5281/zenodo.3264781
https://doi.org/10.5281/zenodo.3264781
https://doi.org/10.5281/zenodo.3264781
http://osrg.github.io/ryu/
https://doi.org/10.1145/3230543.3230575
http://doi.acm.org/10.1145/3230543.3230575
http://doi.acm.org/10.1145/3230543.3230575
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton

17

ACM, 2010, 19:1–19:6. isbn: 978-1-4503-
0409-2. doi: 10.1145/1868447.1868466.
url: http : / / doi . acm . org / 10 . 1145 /
1868447.1868466.

[9] Marc et al. marcharper/python-ternary:
Version 1.0.6. Apr. 2019. doi: 10 . 5281 /
zenodo.2628066. url: https://doi.org/
10.5281/zenodo.2628066.

[10] Ádler Neves. Mininet+Ryu Routing algo-
rithm Comparator. July 2019. doi: 10 .

5281/zenodo.3273440. url: https://doi.
org/10.5281/zenodo.3273440.

[11] Rastin Pries et al. “Power Consumption
Analysis of Data Center Architectures”.
In: Green Communications and Network-
ing. Ed. by Joel J. P. C. Rodrigues et al.
Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 114–124. isbn: 978-3-642-
33368-2.

https://doi.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
https://doi.org/10.5281/zenodo.2628066
https://doi.org/10.5281/zenodo.2628066
https://doi.org/10.5281/zenodo.2628066
https://doi.org/10.5281/zenodo.2628066
https://doi.org/10.5281/zenodo.3273440
https://doi.org/10.5281/zenodo.3273440
https://doi.org/10.5281/zenodo.3273440
https://doi.org/10.5281/zenodo.3273440

	Introduction
	Materials and Methods
	Representing the topologies
	The topologies
	Testing the topologies
	The OpenFlow controller

	Results
	Discussion
	Acknowledgments

